Sample Exam 2
 Math 127, Fall 2023

1. (12 points) Let \mathcal{C} be a binary linear code of length n.
(a) Define what it means for a matrix G to be a generator matrix for \mathcal{C}.
(b) If G is a generator matrix for \mathcal{C} and H is a parity check matrix for \mathcal{C}, what can you say about the product $H G$? Briefly EXPLAIN your answer.
2. (12 points) Let

$$
W=\left\{\left.\left[\begin{array}{c}
x_{1} \\
0 \\
x_{3} \\
x_{4}
\end{array}\right] \right\rvert\, x_{1}, x_{3}, x_{4} \in \mathbf{F}_{23}\right\}
$$

You may take it as given that W is a subspace of \mathbf{F}_{23}^{4}.
(a) Guess a basis \mathcal{B} for W. No explanation necessary.
(b) Prove that \mathcal{B} spans W, i.e., prove that every $\mathbf{x} \in W$ is a linear combination of the vectors in \mathcal{B}.
3. (12 points) Consider $a(x)=x^{6}+x^{2}$ and $b(x)=x^{5}+x^{4}+x^{3}+1$ in $\mathbf{F}_{2}[x]$, and note that

$$
\begin{aligned}
x^{6}+x^{2} & =(x+1)\left(x^{5}+x^{4}+x^{3}+1\right)+x^{3}+x^{2}+x+1 \\
x^{5}+x^{4}+x^{3}+1 & =\left(x^{2}\right)\left(x^{3}+x^{2}+x+1\right)+x^{2}+1 \\
x^{3}+x^{2}+x+1 & =(x+1)\left(x^{2}+1\right)
\end{aligned}
$$

(I.e., you are given the above facts and do not need to check them yourself.)

Find $f(x), g(x) \in \mathbf{F}_{2}[x]$ such that $f(x) a(x)+g(x) b(x)=\operatorname{gcd}(a(x), b(x))$. Show your work and clearly indicate your answer.
4. (12 points) Let \mathcal{C} be the binary linear code of length 7 with parity check matrix

$$
\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

(a) Find a basis for \mathcal{C}. Show your work.
(b) What is the dimension of \mathcal{C} ? Briefly EXPLAIN your answer.
5. (13 points) Recall that the parity check matrix of the Hamming 7-code \mathcal{H}_{7} is

$$
H_{7}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Suppose Yolanda is receiving transmissions sent using the Hamming 7-code, and she receives
$\mathbf{y}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0\end{array}\right]$. Correct \mathbf{y} to a codeword \mathbf{y}^{\prime}, if necessary, and read off the message bits $3,5,6$, and 7 to find the intended message \mathbf{m}^{\prime}. Show all your work.
6. (13 points) Let W be the subset of \mathbf{F}_{11}^{3} defined by

$$
W=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbf{F}_{11}^{3} \right\rvert\, x_{3}=2 x_{1}\right\}
$$

Give part of the proof that W is a subspace of \mathbf{F}_{11}^{3}, in the following steps:
(a) Explain why $\mathbf{0} \in W$.
(b) Suppose $\mathbf{x} \in W$ and $a \in \mathbf{F}_{11}$. Explain why $a \mathbf{x} \in W$.
7. (13 points) Let A be a matrix with entries in \mathbf{F}_{7} such that

$$
A=\left[\begin{array}{ccccccc}
4 & 3 & 5 & 5 & 3 & 4 & 0 \\
5 & 4 & 0 & 4 & 1 & 2 & 1 \\
1 & 6 & 3 & 2 & 2 & 0 & 2 \\
1 & 3 & 1 & 3 & 1 & 1 & 3 \\
0 & 4 & 5 & 5 & 1 & 4 & 5
\end{array}\right], \quad \quad R R E F(A)=\left[\begin{array}{ccccccc}
1 & 0 & 6 & 0 & 5 & 0 & 2 \\
0 & 1 & 3 & 0 & 4 & 0 & 6 \\
0 & 0 & 0 & 1 & 4 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Find bases for $\operatorname{Col}(A)$ and $\operatorname{Null}(A)$. Show your work.
8. (13 points) Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
0 \\
0 \\
2 \\
0
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{l}
3 \\
1 \\
2 \\
1
\end{array}\right]
$$

in \mathbf{F}_{5}^{4} and let $W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
(a) What is the dimension of W ? PROVE your answer using the definition of linear independence, and not row reduction.
(b) How many vectors are in W ? Briefly EXPLAIN your answer.

