Sample Exam 1
 Math 127, Fall 2023

1. (12 points)
(a) List all polynomials of degree 2 in $\mathbf{F}_{2}[x]$. No explanation necessary.
(b) How many polynomials of degree 5 are there in $\mathbf{F}_{2}[x]$? Briefly justify your answer.
2. (12 points)
(a) Define what it means for $a \in \mathbf{Z} /(17)$ to be a quadratic residue $\bmod 17$.
(b) Find an integer b that is a quadratic residue mod 17 , but is not a perfect square as an integer. Briefly explain how you know that b is a quadratic residue mod 13 .
3. (12 points) Use the Signed Euclidean Algorithm to find $\operatorname{gcd}(136,98)$. Show all your work. (If you don't know/remember how to use the Signed Euclidean Algorithm, you can use the unsigned Euclidean Algorithm for partial credit.)
4. (12 points)

n	1	2	3	4	5	6	7	8	9	10
$7^{n}(\bmod 11)$										

(a) Fill in the above table, where all powers of 7 (i.e., all 7^{n}) are computed in $\mathbf{Z} /(11)$.
(b) Is 7 primitive mod 11? Briefly (1 or 2 sentences) EXPLAIN your answer in terms of the definition of primitive.
5. (13 points) Use the Euclidean Algorithm to find the multiplicative inverse of 70 in Z/(101). Show all your work.
6. (13 points) Use the Euclidean Algorithm to find $\operatorname{gcd}\left(x^{5}+1, x^{4}+x^{3}+x^{2}+1\right)$ in $\mathbf{F}_{2}[x]$. Show all your work.
7. (13 points) For $a \in \mathbf{Z}$, use the definition of "divides" (and not other results from the homework, etc.) to prove that if 3 divides a, then 3 divides $7 a-39$.
(cont. on next page)
8. (13 points) Consider the following (somewhat strange) algorithm.

- Start with an input list of length n.
- Look through the input list (of length n) to find the smallest element, and delete that smallest element, leaving a list of length $n-1$.
- Look through the new input list of length $n-1$, find the smallest element of the new list, and delete it, leaving a list of length $n-2$.
- Continue looking through the remaining part of the list and deleting the smallest element until the list is empty.

Suppose it takes k units of time to look through a list of length k to find the smallest element and delete it, and suppose all other operations take a negligible amount of time.
(a) If we start with a list of length 4 , how many units of time does it take to run the algorithm? Go through all of the steps and find the total amount of time required.
(b) Given a big-O estimate of the time it takes to run the algorithm on a list of length n. Express your answer in the form $O\left(n^{k}\right)$ for some constant k.

