Sample Final Exam Math 127, Spring 2021

1. (14 points) Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be vectors in \mathbf{F}_7^{11} , and let

$$W = \operatorname{span} \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\}.$$

Suppose that the only time we have that $a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3 = \mathbf{0}$ is when a = b = c = 0. How many vectors are there in W? Briefly **EXPLAIN** your answer.

2. (14 points) Consider $a(x) = x^4 + x^2$ and $b(x) = x^3 + 1$ in $\mathbf{F}_2[x]$. Use the Euclidean Algorithm to find $d = \gcd(a(x), b(x))$. Show all your work.

3. (14 points) Let $\omega = e^{2\pi i/6}$ and let

$$f(x) = x^{6} - 1,$$
 $g(x) = x^{5} + x^{4} + x^{3} + x^{2} + x + 1.$

You may take it as given that

$$f(x) = (x-1)g(x).$$

(I.e., you may use that fact without having to prove it.)

- (a) Explain why $f(\omega) = 0$.
- (b) Explain why $g(\omega) = 0$.

4. (14 points) Note that in $\mathbf{F}_2[x]$, we have

$$x^{5} + x^{3} + 1 = (x^{3} + x^{2} + x)(x^{2} + x + 1) + (x + 1),$$

$$x^{2} + x + 1 = (x)(x + 1) + 1.$$

(I.e., you are given the above facts and do not need to check them yourself.)

Let $\mathbf{F}_{32} = \mathbf{F}_2[\alpha]$, where α is a root of $x^5 + x^3 + 1$. Find the multiplicative inverse of $\alpha^2 + \alpha + 1$. Show all your work.

5. (14 points) Recall that the parity check matrix of the Hamming 7-code \mathcal{H}_7 is

$$H_7 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

Suppose Yolanda is receiving transmissions sent using the Hamming 7-code, and she receives

 $\mathbf{y} = \begin{bmatrix} 1\\0\\1\\0\\0 \end{bmatrix}$. Correct \mathbf{y} to a codeword \mathbf{y}' , if necessary, and read off the message bits 3, 5, 6,

and 7 to find the intended message \mathbf{m}' . Show all your work.

6. (14 points) Let \mathcal{C} be the binary linear code of length 5 with parity check matrix

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

In other words, C is the nullspace of H.

- (a) Find a basis for \mathcal{C} . Show your work.
- (b) Find the dimension of C. **JUSTIFY** your answer.

7. (14 points) Let $\mathbf{F}_{256}^{\times}$ be the multiplicative group of the finite field of order 256.

- (a) Is it possible that the order of every element of $\mathbf{F}_{256}^{\times}$ is < 100? Briefly **JUSTIFY** your answer.
- (b) Exactly one of the following statements is **FALSE**:
 - There exists an element $\alpha \in \mathbf{F}_{256}^{\times}$ of order 51.
 - There exists an element $\alpha \in \mathbf{F}_{256}^{\times}$ of order 7.

Indicate which of those statements is false, and briefly **EXPLAIN** how you know that statement is false.

8. (14 points) Recall that the various forms of the Division Theorem for a ring R all say that when we divide $a \in R$ by some nonzero divisor $d \in R$, we get

$$a = qd + r$$

- (a) Suppose $R = \mathbf{Z}$ and the divisor d = 10. What conditions must be satisfied by the remainder r in that case? Be as precise as possible.
- (b) Suppose $R = \mathbf{F}_5[x]$ and the divisor $d(x) = x^4 + 2x + 3$. What conditions must be satisfied by the remainder r(x) in that case? Be as precise as possible.

9. (17 points) **PROOF QUESTION.** Let R be a ring, and suppose that I is an ideal of R and c is a fixed element of R. Define

$$J = \{ ca \mid a \in I \} \,. \tag{1}$$

In other words, J is the set of all multiples of elements of I by the fixed element c.

- (a) What properties must I have, given that I is an ideal of R? In other words, what does it mean for I to be an ideal of R, by definition? (You can just copy this from your notes.)
- (b) Prove that J is closed under addition. (Suggestion: What does it mean to say that x, y are in J?)
- (c) Prove that J is closed under multiplication by $r \in R$.

- **10.** (17 points) Let $m(x) = x^4 + x + 1$, and let $F = \mathbf{F}_2[x]/(m(x))$.
- (a) It is a fact that F is a field. What is the **ONE** key property of the polynomial m(x) that ensure that R is a field?
- (b) Let α be a root of m(x) in F. Fill in the blank: Every element of F can be represented as a polynomial in α of degree at most \Box .
- (c) Let $\beta = \alpha^3 + 1$ and $\gamma = \alpha^2 + \alpha$. Calculate the product $\beta\gamma$, and put your final answer in the form described in part (b).

11. (17 points) Let $\omega = e^{2\pi i/15}$, let $G = \langle \omega \rangle = C_{15}$, and let $H = \langle \omega^3 \rangle$, the cyclic subgroup of G generated by ω^3 .

- (a) Write out all of the elements of H. How many elements does H have?
- (b) Write $G = C_{15}$ as a disjoint union of cosets of H.

12. (17 points) Find d = gcd(162, 88), and find $x, y \in \mathbb{Z}$ such that 162x + 88y = d. Show all your work.

13. (20 points) Let $E = \mathbf{F}_{256}$, and let α be a primitive root of unity of E. Let C be the corresponding BCH code of designed distance $\delta = 5$ over \mathbf{F}_2 .

- (a) Find the Frobenius orbits needed to construct the BCH code \mathcal{C} . Show all your work.
- (b) Express $m_3(x)$ as a product of terms of the form $(x \alpha^i)$.
- (c) Express the generating polynomial g(x) of C as a product of minimal polynomials $m_i(x)$. (You do not need to expand those $m_i(x)$.)
- (d) Find $k = \dim \mathcal{C}$.