## Format and topics for exam 2 Math 127 **General information.** Exam 1 will be a timed test of 75 minutes, covering Sections 3.5–3.6, 4.2, 5.3–5.6, and 6.1–6.4 of the class notes/text. More to the point, the exam will cover the portions of PS04–06 coming from Chs. 3–6 and the ideas contained therein. No books, notes, calculators, etc., are allowed. As before, most of the exam will rely on understanding the problem sets and the definitions and theorems that lie behind them. If you can do all of the homework, and you know and understand all of the definitions and the statements of all of the theorems we've studied, you should be in good shape. You should not spend time learning proofs of theorems from the book, except the ones assigned on homework. On the other hand, you should defintely spend time learning the *statements* of the important theorems in the text. Exam 2 will follows the same ground rules as Exam 1 did, and there will be the same possible types of questions: computations, proofs, explanations/problem solving, true/false/justify, and statements of definitions/theorems. **Definitions.** The most important definitions and symbols we have covered are: | 3.5 | divides | common divisor | |-----|-----------------------------------|-------------------------------| | 5.5 | | associates | | | greatest common divisor | | | | up to associates | irreducible | | 4.0 | reducible | | | 4.2 | binary operation | ring | | | domain | inverse | | | unit | field | | | fraction | $\frac{a}{b}$ | | 5.3 | $F^n$ | vector | | | zero vector | scalar | | | vector addition | scalar multiplication | | | subspace | linear combination | | | coefficients of a lin. comb. | trivial lin. comb. | | | nontrivial lin. comb. | span (noun) | | | span (verb) | spanning set | | | linearly dependent | linear dependency | | | linearly independent | basis | | | dimension | coordnates | | 5.4 | $n \times k$ matrix | matrix addition | | | scalar multiplication | row-column product | | | dot product | matrix-vector product | | | matrix product | column space | | | $\operatorname{Col}(A)$ | nullspace | | | Null(A) | | | 5.5 | linear equation | system of linear equations | | | homogeneous linear system | matrix of a linear system | | | REF | leading 1 | | | pivot column | RREF | | | pivot variable | free variable | | | elementary row operations | Gaussian reduction | | | rank | nullity | | 5.6 | maximal linearly independent set | | | 6.1 | parity check code of length $n+1$ | repetition code of length $n$ | | | 1 | . 0 | 6.2 bit bitstring of length n code codeword binary linear code of length n standard framework encoding decoding correct read generator matrix parity check matrix syndrome 6.3 Hamming 7-code $\mathcal{H}_7$ Hamming 8-code $\mathcal{H}_8$ [n, k, d] binary linear code Hamming distance Hamming weight Hamming path of length k metric Theorems, results, algorithms. The most important theorems, results, and algorithms we have covered are listed below. You should understand all of these results, and you should be able to state any theorem clearly and correctly. More precisely, you should be able to state any of the theorems, given a reasonable identification of the theorem (either its name or a vague description). - **Sect. 3.5** Euclidean Algorithm for polynomials (Alg. 3.5.4). EA works (Thm. 3.5.6), common divisors divide GCD (Cor. 3.5.7). GCD unique up to associates (Cor. 3.5.9). Unique Factorization for Polynomials (Thm. 3.5.12). - **Sect. 3.6** Bezout's Identity for polynomials (Thm. 3.6.1). Linear equations in F[x] (Cor. 3.6.3). - Sect. 4.2 Zero factor property implies cancellation (Thm. 4.2.8). Fields are domains (Thm. 4.2.12). Fraction notation works (Thm. 4.2.14). - Sect. 5.3 Span is a subspace (Thm. 5.3.8); a basis gives unique coordinates (Thm. 5.3.15). - **Sect. 5.4** Algebraic properties of matrix multiplication (Thm. 5.4.7). Nullspaces are subspaces (Thm. 5.4.9); columns are linearly independent if and only if nullspace is 0 (Thm. 5.4.10). - **Sect. 5.5** Solving a homogeneous linear system in RREF (Alg. 5.5.3). RREF gives basis for nullspace (Thm. 5.5.5). Gaussian reduction (Alg. 5.5.7). Columns linearly independent if and only if all pivot (Cor. 5.5.10). Finding a basis for Col(A) (Thm. 5.5.12). Rank-nullity (Cor. 5.5.15). - **Sect. 5.6** Comparison Theorem 5.6.2, Dimension Theorem 5.6.3, dim is min span/max linearly independent (Cor. 5.6.4). Maximal linear independent set is a basis (Thm. 5.6.6); bases always exist (Cor. 5.6.7). Subspace Size Theorem (Cor. 5.6.8). - **Sect. 6.1** Majority logic for repetition code (6.1.3). - **Sect. 6.3** Decoding $\mathcal{H}_7$ (Alg. 6.3.2); $\mathcal{H}_7$ corrects 1 error Thm. 6.3.4. $\mathcal{H}_8$ corrects 1 error, detects 2 (Thm. 6.3.6). - **Sect. 6.4** Hamming distance is shortest Hamming path (Thm. 6.4.8), is translation invariant (Cor. 6.4.9), is a metric (Thm. 6.4.11). Nearest-neighbor error correction (Alg. 6.4.12). Nearest neighbor corrects $\lfloor (d-1)/2 \rfloor$ errors, detects $\lfloor d/2 \rfloor$ errors (Thm. 6.4.13). **Examples.** You will also need to be familiar with the key properties of the main examples we have discussed. The most important examples we have seen are: - Sect. 3.5 Euclidean Algorithm (Exmp. 3.5.5). - Sect. 3.6 Euclidean Rewriting example (Exmp. 3.6.2). - **Sect. 4.2** Rings: $\mathbb{Z}$ , $\mathbb{Q}$ , $\mathbb{R}$ , $\mathbb{C}$ , R[x], $\mathbb{Z}/(n)$ . Fields: $\mathbb{Q}$ , $\mathbb{R}$ , $\mathbb{C}$ , $\mathbb{Z}/(p)$ (p prime). - **Sect. 5.3** Bitstrings are elements of $\mathbb{F}_2^n$ . Subspaces: $F^n$ , zero subspace, subspace $\mathcal{C}$ from Sect. 5.1. Bases for $F^n$ , zero subspace, subspace $\mathcal{C}$ from Sect. 5.1. - **Sect. 5.4** Matrix-vector multiplication is linear combination of columns. - Sect. 5.5 Solving equations in RREF. Gaussian reduction. Analysis of subspace C from Sect. 5.1. - **Sect. 5.6** Calculating: Col(A), Null(A), rank, nullity in various situations. - Sect. 6.1 Parity check code, repetition code. - Sect. 6.2 Parity check code by parity check matrix; repetition code from generator matrix. **Sect. 6.3** Encoding and decoding in $\mathcal{H}_7$ . **Sect. 6.4** [n, k, d] stats of: parity check code, repetition code, $\mathcal{H}_7$ , $\mathcal{H}_8$ . Hamming distance. **Other.** You should have a working familiarity with techniques and strategies for proof and logic tips, to the extent that we have done proofs in the homework. You should also review how to prove that a set is closed under a given operation (Section 1.3.4). Not on exam. Sections 4.1, 4.3, 5.1-5.2. Good luck.