
Math 127, Mon Apr 05

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: 7.3–7.4.

I PS07 outline due Wed, full version due in one week.

I Problem session Fri Apr 09, 10am–noon.



Ideals: A long recap

Definition
Let R be a (commutative) ring. An ideal of R is I ⊆ R s.t.:

1. (Zero) The zero element of R is contained in I .

2. (Closed under addition) If x , y ∈ I , then x + y ∈ I .

3. (Closed under R-multiplication) If x ∈ I and r ∈ R, then
rx ∈ I .

Ideals are very abstract, very important — and very lucrative.



Proofs (review/reboot)
Proofs are mostly not:

Most of the time, we prove statements of the form “If P, then Q.”
A proof of that statement EXPLAINS logically how the
assumption P must lead to the conclusion Q.
To set up (outline) the proof of “If P, then Q”:



Example
R a ring, a ∈ R. Prove that

(a) = {ra | r ∈ R}

is an ideal of R. The ideal test says that the set (a) is an ideal of
R exactly when all of the following are true:
I (Zero) The zero element of R is contained in I .
I (Closed under addition) If x , y ∈ I , then x + y ∈ I .
I (Closed under R-multiplication) If x ∈ I and r ∈ R, then

rx ∈ I .

In reverse order:





Definition of quotient ring

Let R be a ring and let I be an ideal of R. We define the quotient
ring R/I as follows.

I Set: The elements of R/I are the cosets of I in R. Note that
if r and s represent the same coset of I , then the cosets r + I
and s + I are actually the same element of R/I , since
r + I = s + I .

I Addition: For r + I , s + I ∈ R/I , we define the sum

(r + I ) + (s + I ) = (r + s) + I .

I Multiplication: For r + I , s + I ∈ R/I , we define the product

(r + I )(s + I ) = rs + I .

The zero element of R/I is 0 + I = I , and the one element is 1 + I .



Review/revision: Computation in Z/(m)

Let I = (m) (the integer multiples of m). Working mod I , we have:

I Elements: The cosets of I in Z, which we can write as
0 + I , 1 + I , . . . , (m− 1) + I , or {0, . . . ,m − 1} for short, since
division by m gives remainders between 0 and m − 1.

I Operations: Addition and multiplication are computed in Z
and then reduced mod I . I.e., you use division by m with
remainder to choose a reduced representative for the final
answer.

Example:



Computation in F [x ]/(m(x)), version 1
F a field, m(x) ∈ F [x ] (degm > 0), I = (m(x)) (the polynomial
multiples of m(x)). Working mod I , we have:

I Elements: The cosets of I in F [x ], which we can write as
r(x) + I where deg r(x) < degm(x), since division by m(x)
gives remainders of degree < degm(x).

I Operations: Addition and multiplication are computed in
F [x ] and then reduced mod I . I.e., you use division by m(x)
with remainder to choose a reduced representative for the
final answer.



Computation in F [x ]/(m(x)), version 2
F a field, m(x) ∈ F [x ] (degm = k > 0), I = (m(x)) (the
polynomial multiples of m(x)). Abbreviate α = x + I . Working
mod I , we have:

I Elements: The cosets of I in F [x ], which we can write as
r(α) where deg r < k, since setting m(α) = 0 allows you to
reduce any polynomial of degree ≥ k .
More specifically, if degm = k , then you rewrite m(α) = 0 as
a reduction relation αk = · · · and apply that repeatedly to
reduce any higher-degree terms to terms of degree < k .

I Operations: Addition and multiplication are computed in
polynomials in α and then reduced. I.e., you use the relation
m(α) = 0 to choose a reduced representative for the final
answer.



Example: F2[x ]/(x4 + x + 1)

Let m(x) = x4 + x + 1 and consider R = F2[x ]/(m(x)).
I.e., let R = F2[α], where α is a root of m(x). So α4 + α + 1 = 0,
which means that:

Elements of R:



F2[x ]/(x4 + x + 1), cont.

Reduction relations:

Addition in R:

Multiplication in R:



Reciprocals in F [x ]/(m(x))

Let R = F [α], where α is a root of m(x) ∈ F [x ], and suppose
b(x) ∈ F [x ].
Follows from polynomial Euclidean Reduction that:
Thm: For b(x) ∈ F [x ], the element b(α) ∈ R has an inverse in R
if and only if gcd(b(x),m(x)) = 1, in which case the inverse g(α)
of b(α) can be computed by solving

f (x)m(x) + g(x)b(x) = 1

in F [x ], using Euclidean Reduction for polynomials.

Cor: R is a field if and only if m(x) is irreducible.

(Analogue of fact that Z/(m) is a field if and only if m is prime.)



Example: F2[x ]/(x4 + x + 1)
Let m(x) = x4 + x + 1, R = F2[x ]/(m(x)) = F2[α]. Turns out
that m(x) is irreducible. Find inverse of:



Principal ideal domains
To say that a ring R is a principal ideal domain, or PID, means
that R is an integral domain and that every ideal of R is principal.
In other words, the second condition says that if I is an ideal of R,
then I = (a) (the set of all R-multiples of a) for some a ∈ I .

Theorem
Let R be either Z or F [x ] (F a field), or more generally, let R be a
Euclidean domain. Then R is a PID.

Proof, case R = Z: We apply signed division:

If a, d ∈ Z, d 6= 0, then for some q, r ∈ Z,

a = dq + r with |r | ≤ |d |
2

.



The minimal polynomial

To recap: We know in the abstract that if I is an ideal of F [x ],
then there is some d(x) such that I = (d(x)). If we choose d(x)
to be monic (leading coefficient 1), then we call d(x) the minimal
polynomial of I .

Note that we only know d(x) exists in the abstract, and in
practice, we use different methods to figure out what d(x) is in
different circumstances. For example:

Theorem
Let F be a field, and consider the ideal I = (a(x), b(x)) of F [x ],
where a(x) and b(x) are nonzero polynomials in F [x ]. Then the
minimal polynomial of I is gcd(a(x), b(x)), which can be
computed by the Euclidean algorithm.


