Math 127, Mon Apr 05
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Use a laptop or desktop with a large screen so you can read
these words clearly.

In general, please turn off your camera and mute yourself.

Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

Please always have the chat window open to ask questions.
Reading for today: 7.3-7.4.
PS07 outline due Wed, full version due in one week.

Problem session Fri Apr 09, 10am—noon.



|deals: A long recap

/ v/l
Definition 0%

Let R be a (commutative) ring. An ideal of Ris | C R s.t.
1. (Zero) The zero element of R is contained in /.
2. (Closed under addition) If x,y € I, then x +y € I.
3. (Closed under R-multiplication) If x € / and r € R, then
rx € 1.

Ideals are very abstract, very important — and very lucrative.



Proofs (review/reboot) j "\r{(-r

Proofs are mostly not:
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(contrapositive)

Most of the time, we prove statements of the form “If P, then Q.
A proof of that statement EXPLAINS logically how the
assumption P must lead to the conclusion Q.

To set up (outline) the proof of “If P, then Q":
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Example (a) is all things that look like this
R a ring, a € R. Prove that / (have form ra)

the ideal genera‘ted by a “"9(3) — {ra ‘ re R} and Satisfy this condition
is an ideal of R. The ideal test says that the set (a) is an ideal of
R exactly when all of the following are true: =
» (Zero) The zero element of R is contained in /.

» (Closed under addition) If x,y € I, then x +y € .
> (Closed under R-multiplication) If x € [ and r € R, then
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In reverse order:
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Definition of quotient ring

Let R be a ring and let / be an ideal of R. We define the quotient
ring R/ as follows.

» Set: The elements of R// are the cosets of / in R. Note that
if r and s represent the same coset of /, then the cosets r + /
and s + [ are actually the same element of R//, since
r+1=s+1.

» Addition: For r +/,s+ 1 € R/I, we define the sum

(r+D)+(s+1)=(r+s)+1.
» Multiplication: For r+ /,s+ 1 € R/I, we define the product
(r+D(s+1)=rs+1.

The zero element of R/ is 04/ = [, and the one element is 1+ /.



Review/revision: Computation in Z/(m)

Let | = (m) (the integer multiples of m). Working mod /, we have:

» Elements: The cosets of / in Z, which we can write as
0+/1,1+1,...,(m—1)+1, or {0,...,m— 1} for short, since
division by m gives remainders between 0 and m — 1.

» Operations: Addition and multiplication are computed in Z
and then reduced mod /. l.e., you use division by m with
remainder to choose a reduced representative for the final
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Computation in F[x]/(m(x)), version 1 }:: —
F a field, m(x) € F[x] (degm > 0), | = (m(x)) (the ponnomiaIa'
multiples of m(x)). Working mod /, we have:

» Elements: The cosets of / in F[x], which we can write as
r(x) 4+ I where deg r(x) < deg m(x), since division by m(x)
gives remainders of degree < deg m(x).

» Operations: Addition and multiplication are computed in
F[x] and then reduced mod /. l.e., you use division by m(x)
with remainder to choose a reduced representative for the

final answer.
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Computation in F[x]/(m(x)), version 2
F a field, m(x) € F[x] (degm = k > 0), I = (m(x)) (the
polynomial multiples of m(x)). Abbreviate o = x + [. Working
mod /, we have:

» Elements: The cosets of / in F[x], which we can write as

r(a) where degr < k, since setting m(a) = 0 allows you to

reduce any polynomial of degree > k.

Viore specifically, if deg m = k, then you rewrite m(a)) = 0 as

reduction relation o¥ = --- and apply that repeatedly to

educe any higher-degree terms to terms of degree < k.

» Operations: Addition and multiplication are computed in
polynomials in « and then reduced. l.e., you use the relation

m(a) = 0 to choose a reduced representative for the final
answer.
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Example: Fp[x]/(x* 4+ x + 1)

=

Let m(x) = x* +- x + 1 and consider R= Fg[x]/(m(
le., let R = F3[a], where « is a root of m(x). So a* —l— a+1=0,
which means that:

« T=p(¢ |

Elements of R:

Can reduce any polynomial in alpha of degree == 4 until it has deg <= 3.
So elements of the ring are exactly the polynomials in alpha of deg <= 3:
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Fa[x]/(x* + x + 1), cont.
Reduction relations; d -°<‘P l
2=0 ( ORE
Addition in R: O‘ —1’2@2 "'0{'[’ l
(<t +o0 TR At |

Multiplication in R:

C,( + ) (aﬂ ey
'f'o(l"[—f'o( 4o Vot re&luce‘ﬁ

Waﬂh Kot on

= X+ |

I n(



Reciprocals in F[x]/(m(x))

Let R = F[a], where « is a root of m(x) € F[x], and suppose
b(x) € F[x].
Follows from polynomial Euclidean Reduction that:
Thm: For b(x) € F[x], the element b(a) € R has an inverse in R
if and only if ged(b(x), m(x)) = 1, in which case the inverse g(«)
of b(«a) can be computed by solvin
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f(x)m(x) + g(x)b(x) =1 (b h»\
in F[x], using Euclidean Reduction for polynomials! ‘C K e l’\
Cor: R is a field if and only if m(x) is irreducible. 61-4

(Analogue of fact that Z/(m) is a field if and only if m is prime.)



Example: Fp[x]/(x* 4+ x + 1)
Let m(x) = x* + x + 1, R = Fa[x]/(m(x)) = Fz[a]. Turns out
that m(x) is irreducible. Find inverse of:



Principal ideal domains

To say that a ring R is a principal ideal domain, or PID, means
that R is an integral domain and that every ideal of R is principal.
In other words, the second condition says that if / is an ideal of R,
then | = (a) (the set of all R-multiples of a) for some a € /.

Theorem

Let R be either Z or F[x] (F a field), or more generally, let R be a
Euclidean domain. Then R is a PID.

Proof, case R = Z: We apply signed division:
Ifa,d € Z, d # 0, then for some q,r € Z,

|d|

a=dq+r With]r|§7.



The minimal polynomial

To recap: We know in the abstract that if / is an ideal of F[x],
then there is some d(x) such that I = (d(x)). If we choose d(x)
to be monic (leading coefficient 1), then we call d(x) the minimal
polynomial of /.

Note that we only know d(x) exists in the abstract, and in
practice, we use different methods to figure out what d(x) is in
different circumstances. For example:

Theorem

Let F be a field, and consider the ideal | = (a(x), b(x)) of F[x],
where a(x) and b(x) are nonzero polynomials in F[x]. Then the
minimal polynomial of | is gcd(a(x), b(x)), which can be
computed by the Euclidean algorithm. ]



