
Math 127, Mon Mar 08

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: 5.5–5.6 (reload book again).

I Reading for Wed: 6.1–6.2.

I PS04 due tonight; PS05 outline due Wed Mar 10.

I Problem session Fri Mar 12, 10am–noon.



Linear algebra: Questions to resolve

I Given a subspace W of F n and vectors {v1, . . . , vk} that span
W , how can we check that {v1, . . . , vk} is a basis for W ?

I Given a subspace W of F n, how can we find a basis for W ?

I Is it possible for a subspace W to have one basis with 5
vectors and another basis with 7 vectors? In other words, is it
possible for the dimension of W to be both 5 and 7?

I Is it possible for F 8 to contain a subspace of dimension 10? In
other words, is it possible for a smaller space to have a larger
dimension?

I Can we find a subspace of F n that doesn’t have a basis at all?



(Reduced) row-echelon form
To say A is in row-echelon form, or REF, means:

1. The leftmost entry of each nonzero row of A is 1. (Leading
1s)

2. The leading 1s move strictly to the right as we go down the
rows of A.

If A is in REF, columns with leading 1s the pivot columns of A.
If A is in REF, and in addition, all entries above every leading 1 are
0, we say that A is in reduced row-echelon form, or RREF.

Example/picture:

A =

1 3 0 0 2 1 6
0 0 1 0 3 3 3
0 0 0 1 3 2 2





Systems in RREF are straightforward to solve

With F = F7, consider the system Ax = 0 with matrix

A =

1 3 0 0 2 1 6
0 0 1 0 3 3 3
0 0 0 1 3 2 2


Rewrite equations:



Thm: This process gives a basis for Null(A).





How can we reduce an arbitrary system to RREF?

Definition
The elementary operations are:

1. Switch equation i and equation j
⇔ switch row i and row j of A.

2. For a ∈ F , a 6= 0, multiply both sides of equation i by a
⇔ multiply row i of A by a.

3. For a ∈ F , add a times equation i to equation j
⇔ add a times row i of A to row j .

Because these operations are reversible, they don’t change Null(A).



Gaussian reduction

1. If A is the n × k zero matrix, done.

2. Else swap rows (type 1) to get leftmost a 6= 0 in top row of A.

3. Multiply top row by a−1 to make leading 1 (type 2).

4. Add multiples of the top row to other rows (type 3) to make
entries underneath top row leading 1 equal to 0.

5. Go back to step 1 and apply Gaussian reduction to the k − 1
rows of A beneath the top row.

This results in REF.
⇒ RREF by adding multiples of each nonzero row to the rows
above it, right to left, to clear everything above leading 1s.
Final result is RREF(A), the RREF of A.



Example
Consider the matrix

A =

2 6 6 5 2 2 5
1 3 6 5 0 1 6
4 5 2 1 3 5 4


with entries in F7. Find Null(A).







The upshot

I Given matrix A, we can compute a basis for Null(A). So we
can find a basis for a subspace described as a nullspace
(solution set of Ax = 0).

I Given a subspace W of F n and vectors {v1, . . . , vk} that span
W , let A be the matrix with columns v1, . . . , vk . Then
{v1, . . . , vk} is linearly independent (and therefore, a basis for
W ) if and only if Null(A) = 0, i.e., all columns are pivot
columns.

Remaining question: If W = span {v1, . . . , vk} and {v1, . . . , vk} is
linearly dependent, can we reduce {v1, . . . , vk} to get a basis?



Contraction

Theorem (Contraction)

The pivot columns of the original matrix A, i.e., columns of A that
correspond to pivot columns of RREF(A), form a basis for Col(A).

Idea of proof:

I Free variables show that non-pivot columns are linear
combination of pivot columns, so not needed for span.

I If all free variables = 0, only solution is x = 0, so pivot
columns are linearly independent.

Definition
Let A be a n × k matrix over a field F . We define rank(A), the
rank of A, to be dim(Col(A)), the dimension of the column space
of A, and we define nullity(A), the nullity of A, to be
dim(Null(A)), the dimension of the nullspace of A.

Corollary (Rank-Nullity Theorem)

Let A be a n × k matrix over a field F . Then
rank(A) + nullity(A) = k.



Example
Consider the matrix

A =


5 3 1 4 4 4
2 2 4 6 0 2
1 3 4 0 5 4
1 1 2 3 5 6


with entries in F7. Find bases for Null(A) and Col(A).
Ans: Turns out that

RREF(A) =


1 0 1 1 0 2
0 1 1 2 0 6
0 0 0 0 1 1
0 0 0 0 0 0







Thank goodness, it all works

Theorem (Comparison Theorem)

Let W be a subspace of F n. If {v1, . . . , vs} spans W and
{w1, . . . ,w`} is a linearly independent subset of W , then ` ≤ s.

I.e.: ANY linearly independent subset is no larger than ANY
spanning set.
Why: If s < `, then we can set up with s linear equations in `
variables, which must have a nonzero solution. That nonzero
solution contradicts linear independence of {w1, . . . ,w`}.



Consequences of Comparison Thm

Corollary (Dimension Theorem)

Any two bases for W must have the same size k (i.e., W cannot
have more than one dimension).

Proof:

Corollary

If dimW = k, any linearly independent set must have size ≤ k and
any span set must have size ≥ k.

Proof: PS05.



So how can we be sure that every subspace has a basis?

Definition
Let W be a subspace of F n. A maximal linearly independent
subset of W is a linearly independent subset {v1, . . . , vk} of W
such that for any x ∈W , {v1, . . . , vk , x} is linearly dependent.

Theorem
Let W be a subspace of F n, and suppose {v1, . . . , vk} is a
maxmimal linearly independent subset of W . Then {v1, . . . , vk} is
a basis for W .

(proof omitted)

Corollary

If W is a subspace of F n, then W has a basis.



One more consequence

Corollary (Subspace Size Theorem)

If W is a subspace of a subspace V of F n, then
dimW ≤ dimV ≤ n. In particular, any subspace of F n has
dimension at most n.


