Math 127, Mon Mar 08

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 5.5-5.6 (reload book again). 5.5: all new
- Reading for Wed: 6.1-6.2. problems!
- PS04 due tonight; PS05 outline due Wed Mar 10.
- Problem session Fri Mar 12, 10am-noon.

Linear algebra: Questions to resolve

F tield

- Given a subspace W of F^{n} and vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ that span W, how can we check that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a basis for W ?
- Given a subspace W of F^{n}, how can we find a basis for W ?
- Is it possible for a subspace W to have one basis with 5 vectors and another basis with 7 vectors? In other words, is it possible for the dimension of W to be both 5 and 7 ?
- Is it possible for F^{8} to contain a subspace of dimension 10? In other words, is it possible for a smaller space to have a larger dimension?
- Can we find a subspace of F^{n} that doesn't have a basis at all?

(Reduced) row-echelon form

To say A is in row-echelon form, or REF, means:

1. The leftmost entry of each nonzero row of A is 1 . (Leading 1s)
2. The leading 1 s move strictly to the right as we go down the rows of A.
If A is in REF, columns with leading 1 s the pivot columns of A. If A is in REF, and in addition, all entries above every leading 1 are 0 , we say that A is in reduced row-echelon form, or RREF.

Example/picture:

Systems in RREF are straightforward to solve
With $F=\mathbf{F}_{7}$, consider the system $A_{\mathbf{x}}=\mathbf{0}$ with matrix

$$
\begin{aligned}
& x_{1}+3 x_{2} \\
& +2 x_{5}+x_{6}+6 x_{7}=0 \\
& \begin{aligned}
x_{2} & =x_{2} \\
x_{3}+3 x_{5}+3 x_{6}+3 x_{7} & =0
\end{aligned} \\
& \text { Red } x_{4}+3 x_{5}+2 x_{6}+2 x_{7}=0 \\
& \text { to RHE s: } \quad x_{5}=x_{5}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=x_{2}\left[\begin{array}{l}
4 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{l}
5 \\
0 \\
4 \\
4 \\
1 \\
0 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{l}
6 \\
0 \\
4 \\
5 \\
0 \\
1 \\
0
\end{array}\right]-x_{3}\left[\begin{array}{l}
1 \\
0 \\
4 \\
5 \\
0 \\
1
\end{array}\right]} \\
& \text { Thm This is abasis tor } \\
& N_{4} l(A)
\end{aligned}
$$

How can we reduce an arbitrary system to RREF?

Definition

$$
A \underline{x}=\underline{Q}
$$

The elementary operations are:

1. Switch equation i and equation j \Leftrightarrow switch row i and row j of A.
2. For $a \in F, a \neq 0$, multiply both sides of equation i by a \Leftrightarrow multiply row i of A by .
3. For $a \in F$, add a times equation i to equation j \Leftrightarrow add a times row i of A to row j.

Because these operations are reversible, they don't change $\operatorname{Null}(A)$.

Gaussian reduction

or $n=0$

1. If A is the $n \times k$ zero matrix, done.
2. Else swap rows (type 1) to get leftmost $a \neq 0$ in top row of A.
3. Multiply top row by a^{-1} to make leading 1 (type 2).
4. Add multiples of the top row to other rows (type 3) to make entries underneath top row leading 1 equal to 0 .
5. Go back to step 1 and apply Gaussian reduction to the $y-1$ rows of A beneath the top row.

This results in REF.
\Rightarrow RREF by adding multiples of each nonzero row to the rows above it, right to left, to clear everything above leading 1 s .
Final result is $\operatorname{RREF}(A)$, the RREF of A.

Example

$$
\left[\begin{array}{llllll}
1 & 3 & 0 & 0 & 2 & 1 \\
0 \\
0 & 0 & 1 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 3 & 2
\end{array}\right] k r-3 r 2
$$

The RREF we saw earlier!
So use earlier wort. to get basis for Null (A).

The upshot

- Given matrix A, we can compute a basis for $\operatorname{Null}(A)$. So we can find a basis for a subspace described as a nullspace (solution set of $A \mathbf{x}=\mathbf{0}$).
- Given a subspace W of F^{n} and vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ that span W, let A be the matrix with columns $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$. Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent (and therefore, a basis for W) if and only if $\operatorname{Null}(A)=\mathbf{0}$, i.e., all columns are pivot columns.

Remaining question: If $W=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent, an we reduce $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ to get a basis?

$$
\eta \quad A=\left[\begin{array}{lll}
\underline{v}, & \cdots & \dot{v}_{1+}
\end{array}\right]
$$

Contraction

Theorem (Contraction)

The pivot columns of the original matrix A, i.e., columns of A that correspond to pivot columns of $\operatorname{RREF}(A)$, form a basis for $\operatorname{Col}(A)$. Idea of proof:

- Free variables show that non-pivot columns are linear combination of pivot columns, so not needed for span.
- If all free variables $=0$, only solution is $\mathbf{x}=\mathbf{0}$, so pivot columns are linearly independent.

Definition

Let A be a $n \times k$ matrix over a field F. We define $\operatorname{rank}(A)$, the rank of A, to be $\operatorname{dim}(\operatorname{Col}(A))$, the dimension of the column space of A, and we define nullity (A), the nullity of A, to be $\operatorname{dim}(\operatorname{Null}(A))$, the dimension of the nullspace of A.
Corollary (Rank-Nullity Theorem)
Let A be a $n \times k$ matrix over a field F. Then $\operatorname{rank}(A)+\operatorname{nullity}(A)=k$.

Example
with entries in \mathbf{F}_{7}. Find bases for $\mathbb{N u l l}(A)$ and $\operatorname{Col}(A)$.
Ans: Turns out that

Finding a basis for $\operatorname{Nul}(\mathrm{A})$ is the same bookkeeping procedure that we saw before.

Thank goodness, it all works

Theorem (Comparison Theorem)
Let W be a subspace of F^{n}. If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{s}\right\}$ spans W and $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{\ell}\right\}$ is a linearly independent subset of W, then $\ell \leq s$.
I.e.: ANY linearly independent subset is no larger than ANY spanning set.
Why: If $s<\ell$, then we can set up with s linear equations in ℓ variables, which must have a nonzero solution. That nonzero solution contradicts linear independence of $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{\ell}\right\}$.

Consequences of Comparison Thm

Corollary (Dimension Theorem)

Any two bases for W must have the same size k (i.e., W cannot have more than one dimension).
Proof:

Corollary
If $\operatorname{dim} W=k$, any linearly independent set must have size $\leq k$ and any span set must have size $\geq k$.
Proof: PS05.

So how can we be sure that every subspace has a basis?

Definition

Let W be a subspace of F^{n}. A maximal linearly independent subset of W is a linearly independent subset $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of W such that for any $\mathbf{x} \in W,\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{x}\right\}$ is linearly dependent.

Theorem
Let W be a subspace of F^{n}, and suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a maxmimal linearly independent subset of W. Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a basis for W.
(proof omitted)
Corollary
If W is a subspace of F^{n}, then W has a basis.

One more consequence

Corollary (Subspace Size Theorem)

If W is a subspace of a subspace V of F^{n}, then $\operatorname{dim} W \leq \operatorname{dim} V \leq n$. In particular, any subspace of F^{n} has dimension at most n.

