#### Math 127, Mon Mar 08

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 5.5–5.6 (reload book again). 5.5: all new problems!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Reading for Wed: 6.1–6.2.
- PS04 due tonight; PS05 outline due Wed Mar 10.
- Problem session Fri Mar 12, 10am–noon.

# Linear algebra: Questions to resolve F field

- Given a subspace W of F<sup>n</sup> and vectors {v<sub>1</sub>,..., v<sub>k</sub>} that span W, how can we check that {v<sub>1</sub>,..., v<sub>k</sub>} is a basis for W?
- Given a subspace W of  $F^n$ , how can we find a basis for W?
- Is it possible for a subspace W to have one basis with 5 vectors and another basis with 7 vectors? In other words, is it possible for the dimension of W to be both 5 and 7?
- Is it possible for F<sup>8</sup> to contain a subspace of dimension 10? In other words, is it possible for a smaller space to have a larger dimension?
- Can we find a subspace of F<sup>n</sup> that doesn't have a basis at all?

## (Reduced) row-echelon form

#### To say A is in **row-echelon form**, or **REF**, means:

- 1. The leftmost entry of each nonzero row of A is 1. (Leading 1s)
- 2. The leading 1s move strictly to the right as we go down the rows of *A*.
- If A is in REF, columns with leading 1s the **pivot columns** of A. If A is in REF, and in addition, all entries *above* every leading 1 are 0, we say that A is in **reduced row-echelon form**, or **RREF**.

Example/picture:

$$A = \begin{bmatrix} 1 & 3 & 0 & 0 & 2 & 1 & 6 \\ 0 & 0 & 1 & 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 1 & 3 & 2 & 2 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Systems in RREF are straightforward to solve With  $F = \mathbf{F}_7$ , consider the system  $A\mathbf{x} = \mathbf{0}$  with matrix  $A = \begin{bmatrix} 1 & 3 & 0 & 0 & 2 & 1 & 6 \\ 0 & 0 & 1 & 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 1 & 3 & 2 & 2 \end{bmatrix}$ ars Rewrite equations: +2x+x+6x=0 Xy+3x+2x ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ э

= X6 12.10  $= X_{2}$ 6x7  $-2x_e - x_i -$ Χ, Minus Signs! -3×5-3×6-3×1 Xīž - 5×5-7×2-5×2 This tells us that we can  $\chi_c =$ choose the free variables χζ freely: x 2, x 5, x 6, x 7 And each such choice  $X_{\gamma} =$ gives a unique sol'n. **Thuy.** This process gives a basis for  $N_{\rm HH}(A)$ ┍⋍╟

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで



How can we reduce an arbitrary system to RREF?



Definition

The elementary operations are:

- 1. Switch equation i and equation j $\Leftrightarrow$  switch row i and row j of A.
- 2. For  $a \in F$ ,  $a \neq 0$ , multiply both sides of equation *i* by  $a \Leftrightarrow$  multiply row *i* of A by a.
- 3. For  $a \in F$ , add a times equation i to equation j  $\Leftrightarrow$  add a times row i of A to row j.

Because these operations are reversible, they don't change Null(A).

#### Gaussian reduction

- 1. If A is the  $n \times k$  zero matrix, done.
- 2. Else swap rows (type 1) to get leftmost  $a \neq 0$  in top row of A.
- 3. Multiply top row by  $a^{-1}$  to make leading 1 (type 2).
- 4. Add multiples of the top row to other rows (type 3) to make entries underneath top row leading 1 equal to 0.
- 5. Go back to step 1 and apply Gaussian reduction to the 1 rows of A beneath the top row.

This results in REF.

 $\Rightarrow$  RREF by adding multiples of each nonzero row to the rows above it, right to left, to clear everything above leading 1s. Final result is RREF(A), the **RREF of** A.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Example



33 6 1167 601 2200 r2-2r U r1+v3 D 

[ 300216] & r1-3r2 0000333 0001322) The RREFweson earlier ! So use earlier work to get basis for Null (A).

## The upshot

- Given matrix A, we can compute a basis for Null(A). So we can find a basis for a subspace described as a nullspace (solution set of Ax = 0).
- Given a subspace W of F<sup>n</sup> and vectors {v<sub>1</sub>,..., v<sub>k</sub>} that span W, let A be the matrix with columns v<sub>1</sub>,..., v<sub>k</sub>. Then {v<sub>1</sub>,..., v<sub>k</sub>} is linearly independent (and therefore, a basis for W) if and only if Null(A) = 0, i.e., all columns are pivot columns.

Remaining question: If  $W = \text{span} \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$  and  $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$  is linearly dependent, can we reduce  $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$  to get a basis?

A= [4, - 14]

# Contraction

## Theorem (Contraction)

The pivot columns of the original matrix A, i.e., columns of A that correspond to pivot columns of RREF(A), form a basis for Col(A). **Idea of proof:** 

- Free variables show that non-pivot columns are linear combination of pivot columns, so not needed for span.
- If all free variables = 0, only solution is x = 0, so pivot columns are linearly independent.

#### Definition

Let A be a  $n \times k$  matrix over a field F. We define rank(A), the **rank of** A, to be dim(Col(A)), the dimension of the column space of A, and we define nullity(A), the **nullity of** A, to be dim(Null(A)), the dimension of the nullspace of A. Corollary (Rank-Nullity Theorem)

## Corollary (Rank-Nullity Theorem) Let A be a $n \times k$ matrix over a field F. Then rank(A) + nullity(A) = k.

Example Consider the matrix  $\begin{bmatrix} 5 & 3 & 1 & 4 & 4 & 4 \\ 2 & 2 & 4 & 6 & 0 & 2 \\ 1 & 3 & 4 & 0 & 5 & 4 \\ 1 & 1 & 2 & 3 & 5 & 6 \end{bmatrix}$ (Vy11(A)= (x )+ 2 ( (A)= span (als) with entries in  $\mathbf{F}_7$ . Find bases for Null(A) and Col(A). Ans: Turns out that (0)(  $= \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 & 0 & 6 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$  $\mathsf{RREF}(A)$ basis (01/A) Finding a basis for Null(A) is the same bookkeeping procedure that we saw before.

## Theorem (Comparison Theorem)

Let W be a subspace of  $F^n$ . If  $\{\mathbf{v}_1, \ldots, \mathbf{v}_s\}$  spans W and  $\{\mathbf{w}_1, \ldots, \mathbf{w}_\ell\}$  is a linearly independent subset of W, then  $\ell \leq s$ .

I.e.: **ANY** linearly independent subset is no larger than **ANY** spanning set.

**Why:** If  $s < \ell$ , then we can set up with *s* linear equations in  $\ell$  variables, which must have a nonzero solution. That nonzero solution contradicts linear independence of  $\{\mathbf{w}_1, \ldots, \mathbf{w}_\ell\}$ .

## Consequences of Comparison Thm

Corollary (Dimension Theorem)

Any two bases for W must have the same size k (i.e., W cannot have more than one dimension).

**Proof:** 

#### Corollary

If dim W = k, any linearly independent set must have size  $\leq k$  and any span set must have size  $\geq k$ . **Proof:** PS05.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

So how can we be sure that every subspace has a basis?

#### Definition

Let W be a subspace of  $F^n$ . A maximal linearly independent subset of W is a linearly independent subset  $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$  of Wsuch that for any  $\mathbf{x} \in W$ ,  $\{\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{x}\}$  is linearly dependent.

#### Theorem

Let W be a subspace of  $F^n$ , and suppose  $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$  is a maxmimal linearly independent subset of W. Then  $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$  is a basis for W.

(proof omitted)

#### Corollary

If W is a subspace of  $F^n$ , then W has a basis.

#### One more consequence

Corollary (Subspace Size Theorem)

If W is a subspace of a subspace V of  $F^n$ , then dim  $W \le \dim V \le n$ . In particular, any subspace of  $F^n$  has dimension at most n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00