Example: FFT for $N=24, C_{1} \leq C_{2} \leq C_{6} \leq C_{12} \leq C_{24}$ $\omega^{24}=1$ $\omega^{\prime}-1$ $\left\langle\omega^{24}\right\rangle \leq\left\langle\omega^{12}\right\rangle \leq\left\langle\omega^{4}\right\rangle \leq\left\langle\omega^{2}\right\rangle \leq\langle\omega\rangle$
$H_{0}+H_{2}$

$\left\{1, w^{12}\right\}$	$\left\{1, w^{4}, w^{8}\right\}$	$\left\{1, w^{2}\right\}$	$\{1, w\}$
$d=2$	$d=3$	$d=2$	$d=2$
$m=2^{4}$	$m=12$	$m=4$	$m=2$
$k=12$	$k=4$	$k=2$	
$H_{2}=1=1, u w^{4}+1, \cup w^{8}+1$			

Conceptual description of subgroup fill, step i

In the subgroup fill part of step i, with "input subgroup" H_{i-1}, "output subgroup" H_{i}, and $H_{i-1} \leq H_{i}$:

- For the output corresponding to the j th element of H_{i},
- We form a linear combination starting with the input corresponding to the j th element of H_{i-1},
- Offset by the elements of the transversal,
- With coefficients equal to the elements of the transversal raised to the $(-j)$ th power.

$$
\begin{aligned}
& \begin{array}{l}
\text { Subgroup fill, Step 2: } \\
H_{1}=\left\{1, \omega^{12} \omega^{12} d=3 \quad H_{2}=\left\{1, \omega^{4}\right.\right. \\
K_{H_{i-1}} \quad T=\left\{1, \omega^{4}, \omega^{83}\right\} \omega^{8}, \omega^{12} \omega^{16} \omega^{16}
\end{array} \\
& j=0 y(0)=x(0)+x(4)(1)+x(8) \\
& j^{\prime} y(4)=x(12)+x(16) w^{-4}+x(20) w^{-8} \\
& =2 y(8)=x(0)+x(4) w^{-8}+x(8) w^{-16} \\
& ,=3 y(12)=x(12)+x(16) w^{-12-1} x(20)
\end{aligned}
$$

$$
\begin{aligned}
& =4 y(16)=x(x)+x(4) \omega^{-16}+x(8) \omega^{-8} \\
& j=5 y(20)=x(12)+x(16) \omega^{-20}+x(20) \omega^{-16}
\end{aligned}
$$

Subgroup fill, Step 3:

$$
\begin{aligned}
& H_{2}=\left\langle\omega^{4}\right\rangle \text {; }\left\{\begin{array}{l}
\\
\left\{1, \omega^{2}\right\}
\end{array} H_{3}=\left\langle\omega^{2}\right\rangle\right. \\
& ;,>0 y^{(b)}=x(0)+x(2)^{m+1} \\
& \begin{aligned}
-1 y(2) & =x(4)+x(6) w^{-2} \\
(4) & =x(3)+x(10) w^{-4}
\end{aligned} \\
& y(4)=x(8)+x(10) w^{-4} \\
& y(6)=x(12)+x(14) \omega^{-6} \\
& y(8)=x(16)+x(18) \omega^{-8} \\
& y(10)=x(20)+x\left(221 w^{-10}\right.
\end{aligned}
$$

$$
\begin{aligned}
& y\left(121=x(0)+x(2) \omega^{-12}\right. \\
& y(14)=x(4)+x(6) \omega^{-14} \\
& y(16)=x(8)+x(10) \omega^{-16} \\
& y(18)=x(12)+x(14) \omega^{-18} \\
& y(20)=x(16)-x(18) \omega^{-20} \\
& y(22)=x(20)+x(22) \omega^{-22}
\end{aligned}
$$

Circuit diagrams: $N=24, C_{1} \leq C_{2} \leq C_{6} \leq C_{12} \leq C_{24}$
Step 1, subgroup subdiagram: $\left\langle\omega^{24}\right\rangle \leq\left\langle\omega^{12}\right\rangle$

$$
\begin{aligned}
& y(0)=x(0)+x(12) \\
& y(12)=x(0)+x(12) w^{-12}
\end{aligned}
$$

Step 2, subgroup subdiagram:

Step 3 s．suggoup subdiagag：$\quad\left\langle\omega^{4}\right\rangle \leq\left\langle\omega^{2}\right\rangle$

$$
\begin{aligned}
& j=0 \text { 回 } \longrightarrow \text { 回 }=0\left\{1, \omega^{2}\right\}
\end{aligned}
$$

