Chapter 8 review/recap  This is the end goal (The BCH Theorem):

I

! Let C be a cyclic code of length n generated by the divisor
g(x) € Fa[x] of x" — 1.

Suppose E is an extension of F5 such that for some 6 € N and
some « € E with the order of a exactly equal to n, we have that]

0=g(a) =g(a®)=g(a®) = =g(a’").

Then the minimum distance d of C is at least 4§, i.e., d > 4.
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Cyclic codes and generator polynomials

Concrete examples:

Sect 8.2
A cyclic code of length n is a binary linear code of length D
(subspace of FJ) that is closed under cyclic permutations of
coordinates. More to the point, if we write elements of F3 as
polynomials in R = Fy[x]/(x" — 1), we have:

Fact: A cyclic code C is precisely an ideal of R.
Because F»[x] is a principal ideal domain, so is R, and in fact,
every ideal C of R is generated by some generator polynomial

g(x) that divides x"” — 1.

Moreover, if g(x) is the generator polynomial of C, then
dimC = n — deg g(x).
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Can checlke
E=(1+x)

= principal ideal generated by 1+x

= set of all polynomial multiples of 14+x

EX x4 x= = D(x+1)
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Extensions of F, and orders of elements T = (/%))
(aka extension field) a = ')(‘f'z
74

ol
An extensior#xf F, is some E = F;[x]|/(m(x)) forysg‘me irreducge
m(x) € Fa[x]. If deg m(x) = e, then |E| = 2¢, and elements of E
are polynomials in « of degree < e, with m(a) = 0. So we can
compute in E by reduction: a® = (stuff of degree < e).

—

From the Five Facts for Eirﬁte Fields: For g = 2°, every field of
order g has a primitive element of (multiplicative) order g — 1.

he orders of all other elements of E* (the multiplicative group of
E must divide g — 1; in particular, if k divides g — 1 and S is a

-1
primitive element, then the order of 5% is a2
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E is smallest n>=0 such that
alpha*n=1.
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Minimal polynomials
So we need to find E, « of order nin E, and g(x) € F3[x] such
that g(aX) = 0 for as many consecutive k as possible (error
correction) while keeping deg g as low as possible (higher
dimension of code).
Key fact: If g(8) = 0 then g(53?) = 0, which means that zeros of
a given polynomial come in squaring orbits, or Frobenius orbits.
Specifically, for an element « of order n, we can compute the
Frobenius orbits of o by repeated squaring mod o” = 1 to get the
minimal polynomial of o over F.
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The BCH Algorithm
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Choose an extension E of Fo, |E| = 2°. AO’ wms C

Choose «a € E of order n. Code will have length n.
l.e., you pick how much
error-correction you want.

Let g(x) = lem(my(x), ..., ms_1(x)), i.e., remove repetitions

of minimal polynomials and take the resulting product.

Let C be the cyclic code of length n generated by g(x). Then ﬁkMS
» Length of C is n.
» dimC = n — deg g(x).
» Minimum distance d > 0. (So guaranteed distance is at least

J, and is sometimes better.)

Choose a designed distance § € N.
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Example

E = F35, «a primitive element of E, § =5,7.



Example 0 Y= L’O =10

E = F1gp4, [ primitive element of E, o = 831, § = 5,7.,9.
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