Let \mathcal{C} be a cyclic code of length n generated by the divisor $g(x) \in \mathbf{F}_2[x]$ of $x^n - 1$.

Suppose E is an extension of \mathbf{F}_2 such that for some $\delta \in \mathbf{N}$ and some $\alpha \in E$ with the order of α exactly equal to n, we have that

$$0 = g(\alpha) = g(\alpha^2) = g(\alpha^3) = \cdots = g(\alpha^{\delta-1}).$$

Then the minimum distance d of C is at least δ , i.e., $d \geq \delta$.

Keywords:

- ► Cyclic code ****
- ► Generator polynomial of a cyclic code
- ► Extension of **F**₂
- $ightharpoonup \alpha \in E$ with order n

Cyclic codes and generator polynomials

Concrete examples: Sect 8.2

A **cyclic code** of length n is a binary linear code of length n (subspace of \mathbf{F}_2^n) that is closed under cyclic permutations of coordinates. More to the point, if we write elements of \mathbf{F}_2^n as polynomials in $\overline{R} = \mathbf{F}_2[x]/(x^n-1)$, we have:

Fact: A cyclic code C is precisely an ideal of \overline{R} .

Because $\mathbf{F}_2[x]$ is a principal ideal domain, so is \overline{R} , and in fact, every ideal $\mathcal C$ of \overline{R} is generated by some **generator polynomial** g(x) that divides x^n-1 .

Moreover, if g(x) is the generator polynomial of C, then $\dim C = n - \deg g(x)$.

To say & closed under R-mult! If rER, cee
then reee Above! r=x $C = x_1 + x_3$ V=1+X+X2 C=1+X2 = (+x3+x4) = x+x3

Can check! &=(1+x)

= principal ideal generated by 1+x

= set of all polynomial multiples of 1+x

$$Ex. \ x^3+x=(x^2+1)(x+1)$$

 $yeng$
 $y=1$
 $y=1$
 $y=1$
 $y=1$

Extensions of \mathbf{F}_2 and orders of elements

エ=(m/x))

(aka extension field)

An extension of \mathbf{F}_2 is some $E = \mathbf{F}_2[x]/(m(x))$ for some irreducible $m(x) \in \mathbf{F}_2[x]$. If deg m(x) = e, then $|E| = 2^e$, and elements of E are polynomials in α of degree < e, with $m(\alpha) = 0$. So we can compute in E by reduction: $\alpha^e = (\text{stuff of degree} < e)$.

From the Five Facts for Finite Fields: For $q=2^e$, every field of order q has a **primitive element** of (multiplicative) order q-1. The orders of all other elements of E^\times (the multiplicative group of E must divide q-1; in particular, if k divides q-1 and β is a primitive element, then the order of β^k is $\frac{q-1}{k}$.

In E: Elts=poly in a, Aeg & 2 Kednetian: $x^3 = 4+1$ See(h.7) x = 3, $y = 2^3 = 8$ (Multiplicative) order of alpha in E is smallest n > 0 such that $alpha^n = 1.$ E- F(x), x 42+1=0 2=8,2-1=7/disprin Turns out : 2 = 1, 2 = 1 (n<7) 26=21+2=+1=d+1+2+1-2+1

Minimal polynomials

So we need to find E, α of order n in E, and $g(x) \in \mathbf{F}_2[x]$ such that $g(\alpha^k) = 0$ for as many consecutive k as possible (error correction) while keeping deg g as low as possible (higher dimension of code).

Key fact: If $g(\beta) = 0$ then $g(\beta^2) = 0$, which means that zeros of a given polynomial come in squaring orbits, or **Frobenius orbits**. Specifically, for an element α of order n, we can compute the Frobenius orbits of α^i by repeated squaring mod $\alpha^n = 1$ to get the **minimal polynomial** of α^i over \mathbf{F}_2 .

Example: Signse ord(x)=33. $d^{3}=1$ Or $b(x)=\{a, x^{2}, x^{4}, x^{8}, x^{12}, x^{32}\}$ d^{4} $(a^{32})^{2}=a^{31}$

42 (mod 33)

A34

Abbrev' [1,2,48,14,323]

Really: doubling mod 33

21,25,17)

So sn cll c=7 g sl. g kl=0 is!

$$g(x) = (x-x)(x-x^2)(x-x^4)(x-$$

The BCH Algorithm

1. Choose an extension E of \mathbf{F}_2 , $|E|=2^e$. As $\mathbf{m}=\mathbf{C}$

- 2. Choose $\alpha \in E$ of order n. Code will have length n.
- 3. Choose a **designed distance** $\delta \in \mathbb{N}$. error-correction you want.
- 4. Let $g(x) = \text{lcm}(m_1(x), \dots, m_{\delta-1}(x))$, i.e., remove repetitions of minimal polynomials and take the resulting product.

Let C be the cyclic code of length n generated by g(x). Then

- ightharpoonup Length of \mathcal{C} is n.
- $ightharpoonup \dim \mathcal{C} = n \deg g(x).$
- Minimum distance $d \geq \delta$. (So guaranteed distance is at least δ , and is sometimes better.)

Example

 $E=\mathbf{F}_{32}$, α primitive element of E, $\delta=5,7$.

Example
$$1024 = 2^{10} e = 10$$
 $E = F_{1024}, \beta \text{ primitive element of } E, \alpha = \beta^{31}, \delta = 5,7,9.$
 $0rd(\beta) = 1023$
 $x = \beta^{31} \quad ord(\alpha) = \frac{1023}{31} = 33$
 $0rb(1) = [1, 2, 4, 8, 1, 32, 3], 79,25,17$
 $= 0rb(2) = orb(4)$
 $orb(3) = [3, b, 12, 24, 15, 30, 27, 21, 9, 18]$

$$f(x) = m_1(x)m_3(x)$$

$$(s_1 n c c m_1 = m_2 = m_4)$$

$$d(1) = 20$$
Designed distance 5, which means that we need to pick up 1,2,3,4 in our orbits.
$$d(m) = 33 - 20 = 13$$

$$(33,13,5)$$

$$correct_1$$

$$2 errs$$