
Applied and industrial algebra

Tim Hsu, San José State University

December 7, 2024

ii

Contents

Introduction vii

1 How to think about mathematics 1

1.1 HEY, YOU! . 1

1.2 Problems vs. exercises . 3

1.3 Sets, theorems, and proofs . 4

1.4 Number systems . 11

2 Faster: The Euclidean Algorithm 13

2.1 Divisibility . 13

2.2 Greatest common divisors . 15

2.3 Division with remainder . 19

2.4 The Euclidean Algorithm . 22

2.5 Bezout’s identity and Eucliean Rewriting 25

2.6 A crash course in complexity . 27

3 More: The Polynomial Euclidean Algorithm 37

3.1 The integers mod m . 37

3.2 Modular linear equations and fields . 43

3.3 Polynomials with coefficients in a ring . 47

3.4 Polynomial division with remainder . 52

3.5 The Euclidean algorithm for polynomials 58

3.6 Bezout’s identity for polynomials . 64

4 Rings and fields 67

4.1 Why abstraction? . 67

4.2 Rings and fields . 68

4.3 Factoring and Euclidean domains . 73

5 Linear algebra 79

5.1 A data compression problem . 79

5.2 Linear algebra in three cartoons . 80

5.3 The foundations of linear algebra . 82

5.4 Matrices with entries in a field F . 91

iii

iv CONTENTS

5.5 Systems of linear equations (homogeneous case) 96

5.6 Dimension and rank-nullity . 106

5.7 Row spaces and subspaces as nullspaces . 110

5.8 Systems of linear equations (inhomogeneous case) 111

5.9 Applied and industrial topology . 113

6 Cheaper: Error-correcting codes 115

6.1 The idea of an error-correcting code . 115

6.2 Binary linear codes . 117

6.3 The Hamming 7- and 8-codes . 121

6.4 Hamming distance and error correction . 126

7 Ideals, quotients, and finite fields 131

7.1 Ideals . 131

7.2 Quotient rings . 134

7.3 Computation in F [x]/(m(x)) . 139

7.4 Principal ideal domains . 144

7.5 Homomorphisms . 147

7.6 Finite fields . 153

7.7 Two worked examples: F8 and F16 . 162

8 Stronger: BCH codes 169

8.1 How to build a better code . 169

8.2 Cyclic codes . 171

8.3 Cyclic codes and generator polynomials . 173

8.4 Minimal polynomials . 178

8.5 BCH codes . 184

8.6 Better codes and the burst error problem 192

8.7 Cyclic codes over arbitrary fields . 193

8.8 Reed-Solomon codes . 194

8.9 Error correction in BCH codes . 197

9 The Discrete Fourier Transform 199

9.1 Digital signal processing . 199

9.2 Complex numbers and roots of unity . 199

9.3 Signals . 204

9.4 The Discrete Fourier Transform . 205

9.5 Convolution . 209

9.6 Inner products and orthogonality . 212

10 Groups 217

10.1 Groups and subgroups . 217

10.2 Orders of elements . 220

10.3 Cosets . 222

CONTENTS v

10.4 Public-key cryptography and the discrete log problem 226

11 Even faster: The Fast Fourier Transform 231
11.1 Can we make multiplication faster? . 231
11.2 The Fast Fourier Transform . 232
11.3 Circuit diagrams and the time complexity of the FFT 242
11.4 A “proof of concept” FFT multiplication algorithm 250
11.5 The Schönhage-Strassen multiplication algorithm 250
11.6 The DFT in the language of group theory 251
11.7 Proof of the FFT . 251
11.8 The FFT on an arbitrary group . 255

12 The big reveal 257
12.1 Our secret agenda . 257
12.2 What’s next? . 258

A Unique factorization 261
A.1 The descending chain condition . 261
A.2 Every PID is a UFD . 261

B Theory of finite fields 263
B.1 Kernels and the first isomorphism theorem 263
B.2 The exponent of a finite abelian group . 263
B.3 Field extensions . 264
B.4 Proofs of facts about finite fields . 264
B.5 Factoring the magic polynomial . 264

Index 268

vi CONTENTS

Introduction

Cash Rules Everything Around Me
C.R.E.A.M., get the money
Dollar dollar bill, y’all

— Wu-Tang Clan, C.R.E.A.M.

One of the tricky parts of writing a book in applied math is deciding what you mean by
“applied”. This book uses the following definition of applied and industrial math:

Applied math is math you can use to make money outside of academia (aka
the “real world”).

That definition of “applied” lies behind all of the topics in this book, including:

� The Euclidean algorithm

� Error-correcting codes

� Finite fields

� The Discrete Fourier Transform and the Fast Fourier Transform

(And yes, in case you were wondering, cryptography also falls under the heading of algebra
you can use to make money in the real world, but algebra in cryptography is the main
subject of a lot of other books, so there’s only a bit of it in here.)

In full disclosure, there’s another motive behind this book and its choice of material.
Namely, by the end of this book, you should have an idea of what the basic objects of study
are in abstract algebra, and you should also know some practical reasons why you’d want
to study them. Moreover, each topic in the book is designed to illustrate the following idea:

Abstraction ⇒ Simplification ⇒ Generalization ⇒ Power

And indeed, the not-so-secret hope is that you’ll find that process so interesting that you’ll
go on to take a full theorem-proving course in abstract algebra. Even if you don’t, however,
if you can become not necessarily a producer of abstract algebra (i.e., someone who creates
new definitions and theorems), but instead an informed consumer of abstract algebra (i.e.,
someone who understands and applies existing definitions and theorems), then this book
will have succeeded.

vii

viii INTRODUCTION

On the other hand, an informed consumer of abstract algebra does need to be at least
acquainted with the role of proof, so this book also serves as an introduction to proof if you
need that. Other notable features of the book include:

� Precise, rigorous definitions of objects often appear long after the book has been using
those object. For example, the idea of a ring first appears in Section 2.1, but the actual
definition of ring is delayed until Chapter 4.

� A few sections cover proof strategies to be used in some frequently occurring situa-
tions, such as Section 2.1, where you’ll be asked to prove facts about divisibility of
integers, and Section 5.3, where you’ll be asked to prove facts about spanning and
linear independence.

� Going on the philosophy that the proofs you learn the most from are the ones you
do, not the ones you just read, some of the more approachable proofs of fundamental
results appear as problems to be solved by the reader. In particular, a problem labelled
(say) “(Proves Theorem x.y.z)” has the goal of proving Theorem x.y.z — which means
that the answer “This is true because of Theorem x.y.z” is circular logic to be avoided.

(outline of rest of book)
(contents of a typical semester)

Chapter 1

How to think about mathematics

Time to level up.

— Kamala Khan, Ms. Marvel Vol. 1: No Normal, G. Willow Wilson

1.1 HEY, YOU!

That’s right, you, the reader. Who else would I be talking to?

Sorry about the theatrics, but I wanted to get your attention, because I have good news
and bad news. The good news is that I meant what I said in the Introduction: this book will
teach you algebra you can use to make money. The bad news is that the thing that makes
you money isn’t (rote) computation — it’s theory, or at least conceptual understanding.
Why is that?

� In the fanciest possible scenario, you could become someone who creates new theory
to solve real-world algorithmic problems.

� In a more common scenario, you can get paid to apply someone else’s theory in
practice. To do that, you need to be able to understand what happens in abstract
algebra at a conceptual level, and not just follow a recipe. Even if you’re just using a
canned solution someone else implemented, you can reach a whole other level (and pay
grade) if you can understand what that canned solution does, instead of just treating
it as a black box.

� Conversely, let’s face it, no one will pay you to do computation that you can put into
a recipe — that’s what computers are for.

The fact that theory is the useful part means that you may need to approach this
book (and course, if you’re reading this book as part of a course) differently than you have
approached other math books and courses before.

� You’ll need to put more of an emphasis on language than you have in previous
courses. Much of learning abstract math, especially algebra, is more about learning

1

2 CHAPTER 1. HOW TO THINK ABOUT MATHEMATICS

a particular and precise language than about doing particular computations, so try
to stay attuned to the language used as you go through this book. (It helps to have
friends to talk with about the material.)

� The first step in mastering the language of algebra is to pay careful attention to
the definitions you encounter. To start with, you need to memorize definitions very
precisely; unlike everyday language, small deviations in wording can completely change
the meaning of a mathematical definition. It may help you to think of mathematical
definitions not as saying what an idea means, but more as code (in the sense of
computer code!) that programs what an idea is.

� In particular, you need not just to memorize, but familiarize yourself with the key
examples of the book, in the same way that a chef must be familiar with both various
knives and cooking methods and also various kinds of spices and ingredients. For
example, some of the most important examples in this book include Z, Z/(p) = Fp,
Fn
p , Fq, F [x], F [x]/(p(x)), the cyclic group ⟨a⟩, and the Nth root of unity ω. Now,

there’s no reason you should recognize any of those symbols right now! But keep an
eye out for them as they appear, and find out everything about them that you can
when they do.

� Finally, a small but important point: You’ll probably have to pay more attention to
cases (upper vs. lower) and fonts (standard vs. boldface) than you may have in the
past. For example, the letters f , F , and F are all different, so as you go through this
book, try to absorb the different connotations of each case of font. For example, when
we start to consider fields (an idea you have no reason to know about for now), F will
usually refer to an unspecified field in the abstract, whereas F will usually be used in
the name of a particular concrete example of a field, like F9.

In fact, you’ll probably have to change the way you read mathematics.

� At this in point in your mathematical career, you may be used to reading math by
the following common procedure. (1) You try to do the homework; (2) if you run
into problems, you look for an example to imitate; (3) if you don’t understand the
example, only then do you actually read the main ideas. That may have worked for
you so far, but it’ll be a very inefficient (and probably ineffective) way to read this
book, because in this book, the ability to do the problems comes from understanding
the main ideas. Try (3)–(2)–(1) instead, i.e., start with the ideas and work your way
to the problems.

� You may need to acccept slow progress in reading. That is, your expectations should
be sert so that if you read only a few pages in an hour, instead of thinking “Wow,
only a few pages in an hour,” you think “Wow, I got through a few pages, and it only
took an hour!”

� Every once in a while in this book, you’ll encounter an interruption like:

1.2. PROBLEMS VS. EXERCISES 3

Ask Yourself 1.1.1. (slightly annoying open-ended question, blah blah)

If you actually spend a little time thinking about these “Ask Yourself” questions, in
the end, it will make reading the book easier, as you’ll be in the right frame of mind
for what comes next.

� It also happens occasionally that an important idea in a section of the book can really
only be understood by doing the problems at the end of that section; this will be
indicated by a “see Problem x.y.z” in the text. When that happens, make sure you
do the problem, if your instructor hasn’t already assigned them for you to do or done
them in class.

To be clear, it may turn out that the theory in this book will end up being no big deal
for you, and reading it won’t be much of a challenge. However, if and when things get
tough, come back to this section for help on how to proceed.

1.2 Problems vs. exercises

The renowned math educator Paul Zeitz, in his book The Art and Craft of Problem Solv-
ing [?], draws the following distinction between exercises and problems.

An exercise is a question that tests the student’s mastery of a narrowly
focused technique, usually one that was recently “covered.” Exercises may be
hard or easy, but they are never puzzling, for it is always immediately clear how
to proceed. . . . A problem is a question that cannot be answered immediately.
Problems are often open-ended, paradoxical, and sometimes unsolvable, and
require investigation before one can come close to a solution.

At this point in your mathematical career, you have almost certainly spent most of
your time, maybe all of your time, doing exercises. This book has its share of exercises,
but it also definitely has its share of problems, requiring substantial thought, review of
fundamental ideas, or at the very least, some experimentation, to solve. After all, to return
to our mission statement: What do you think will earn you money in the future, the ability
to do exercises, or the ability to solve problems?

When you come up against a true problem, i.e., something you don’t know how to solve
right away, try the following ideas.

� Read the problem. Get a general idea of what the problem is about, and what the
goal of the problem is.

� Review the definitions. Make sure that you know the definition of all of the
mathematical terms occurring in the problem. Especially in algebra, knowing the
detailed, precise definition of mathematical terms can be half the battle.

� Experiment. Try special cases of the problem: Small cases, random cases. Look for
examples to which the problem applies: Is there a typical example, or even a general
example?

4 CHAPTER 1. HOW TO THINK ABOUT MATHEMATICS

� Keep at it. I can’t always guarantee that you’ll solve a problem if you keep trying,
but I can guarantee that you won’t solve it if you give up.

1.3 Sets, theorems, and proofs

To help make sure everyone starts in the same place, I’m now going to take you through
a crash course in the basics of mathematical theory. To be clear, if you’ve never seen this
stuff before, there’s no reason that it should all make sense to you immediately; I just want
to introduce you to the fundamental ideas you’ll need now, and you’ll grow to understand
them better as you put them into practice in the rest of this book.

1.3.1 Set and set-builder notation

A set S is a bunch of objects, and those objects are called the elements of S. A finite set
can be described by listing its elements inside { }. For example, the elements of the set
S = {2, 3, 5, 7, 11} are the numbers 2, 3, 5, 7, and 11. We also write 2 ∈ S, 3 ∈ S, and so
on, to mean that 2 is an element of S, 3 is an element of S, and so on.

It’s often convenient to describe a set S not by listing the elements of S, but by giving a
precise condition for being an element of S. This set-builder notation looks something like:

S = {x | (defining condition on x)} . (1.3.1)

To break (1.3.1) down, you read the initial { as “the set of all”, the middle | as “such that”,
and the final } as a sort of period to the sentence. In other words, (1.3.1) says “S is the set
of all x such that x satisfies the condition (defining condition).”

To give a concrete example, the set of all even numbers is defined as

E = {n ∈ Z | n = 2k for some k ∈ Z} . (1.3.2)

As you’ll see, Z denotes the set of all integers (positive, zero, and negative), so (1.3.2) says
that E is defined to be the set of all integers n such that n is equal to 2k for some integer
k. And indeed, that’s what you’ve been told an even integer is your whole life: a whole
number that’s twice some other whole number.

The following principle describes how to work with a set described in set-builder nota-
tion.

The Defining Condition Principle: If a set S is given by a defining condition,
then saying that x is an element of S is the same thing as saying that x satisfies the
defining condition of S.

For example, to say that

m ∈ {n ∈ Z | n = 2k for some k ∈ Z} (1.3.3)

1.3. SETS, THEOREMS, AND PROOFS 5

means thatm = 2r for some integer r. This illustrates that you shouldn’t get too attached to
the particular letter occurring in a “for some” part of a set-builder definition. For example,
if you have two even numbers m and n, you shouldn’t say that they’re both equal to 2k,
because that makes it look like m = n; instead, you should say something like m = 2r and
n = 2k for some integers r and k.

You will also encounter the following slightly fancier version of set-builder notation:

S = {foo | (defining condition bar)} . (1.3.4)

Translated, this says: S is the set of all things that look like foo and satisfy condition bar.
Again, to give a concrete example, the set R2 of points in the plane is defined by

R2 =

{[
x1
x2

]∣∣∣∣x1, x2 ∈ R

}
. (1.3.5)

Putting (1.3.5) in practice, to say that x ∈ R2 means that x =

[
x1
x2

]
, where x1, x2 ∈ R. In

other words, R2 is the set of all 2× 1 column vectors with entries in R.

1.3.2 Definitions vs. theorems

The theoretical structure of mathematics can be broken down into definitions and theo-
rems, and it’s crucial for you to understand the difference between them. The idea is that
definitions describe the objects we choose to study, and theorems are logical consequences
that we subsequently deduce about those objects.

Much of the power of theoretical mathematics lies in the fact that, if you choose your
definitions well, then:

1. The definitions will be natural and simple enough that no reasonable person will
disagree with them.

2. Nevertheless, you can deduce interesting theorems about them.

The point is to obtain mathematical conclusions that are based on only a small set of
reasonable assumptions, but can nevertheless be applied to lots of different situations.

Now, if you don’t have much experience thinking about definition-theorem mathematics,
one natural tendency is to lump definitions and theorems together as a list of facts that are
all “true.” However, to understand mathematical theory it’s important that you understand
which facts are true by definition (i.e., because we said so), and which facts are true by
theorem (i.e., because we deduced them). Make sure to pay attention to the distinction
between definitions and theorems as you read this book.

1.3.3 If-then statements and theorems

Most mathematical theorems are if-then statements, so it’s important for you to know a bit
about if-then statements. (This is especially true for the occasional proofs you’ll have to
think about in this book, but it’s even true if you just want to apply what we discuss here.)

6 CHAPTER 1. HOW TO THINK ABOUT MATHEMATICS

An if-then statement has the form “If p, then q,” for some logical statements p and q.
The important things to remember about the statement “If p, then q” are:

� Any statement (truthfully) implies a true statement; that is, “If p, then q” is true
whenever q is true.

� A false statement (truthfully) implies any statement; that is, “If p, then q” is true
whenever q is true.

In other words “If p, then q” is false exactly when p is true and q is false. In particular, if
you want to explain why the possible theorem “If p, then q” is false, you need to come up
with a situation where p is true and q is false.

Here’s a typical example of a theorem stated in if-then form.

Theorem 1.3.1. If an integer n is divisible by 6, then n is even.

Sometimes if-then statements are expressed using “for every” or even just “every”. For
example, Theorem 1.3.1 is equivalent to:

Theorem 1.3.2. Every number divisible by 6 is even.

1.3.4 Direct proofs

A proof is a logical explanation of why a theorem is true. When you are called to do a
proof in this book, the method you should use is what is often called direct proof, though I
personally prefer the name if-then method. The idea of the if-then method is:

The if-then method: To prove the statement “If p, then q,” assume that p is
true and use logic to conclude that q is true.

In other words, a proof of an if-then statement is a logical explanation why certain
assumptions lead to certain conclusions.

For example, the proof of Theorem 1.3.1 should look something like:

Assume: n is divisible by 6.
(blah blah logical deduction blah blah)
Conclude: n is even.

To go one important step further, if we incorporate the definition of divisibility you’ll
see in Chapter 2 (see Definition 2.1.4) at the beginning and the end of the proof, we get:

Assume: n is divisible by 6.
That means that n = 6q for some integer q.
(blah blah logical deduction blah blah)
Therefore, n = 2k for some integer k.
Conclude: n is even.

1.3. SETS, THEOREMS, AND PROOFS 7

1.3.5 Closure proofs

The most common example of an if-then proof that you’ll have to do in this book is a
closure proof. Closure under an operation is itself an important general idea in algebra, but
for concreteness, for now, let’s just consider closure under addition. (If you’ve seen some
linear algebra, you should have seen this idea before.)

Definition 1.3.3. To say that a set of numbers S is closed under addition means: “If
x, y ∈ S, then x+ y ∈ S.”

Closure under multiplication is similar, replacing x+ y with x · y, and so on.
Combining the definition of closure under addition (Definition 1.3.3) and the if-then

method, we see that the proof of the following theorem:

Theorem 1.3.4. The set S is closed under addition.

Looks like this:

Proof. Assume that x ∈ S and y ∈ S.
(blah blah logic whatever)
So x+ y ∈ S.

To give a bit more detail, when you prove that a set S is closed under an operation, quite
often S is defined using set-builder notation (Section 1.3.1). To give a concrete example,
suppose you want to prove the following theorem.

Theorem 1.3.5. The set of even numbers E is closed under addition.

To prove Theorem 1.3.5, you first have to remember that the even numbers have the
following set-builder definition:

E = {n ∈ Z | n = 2k for some k ∈ Z} . (1.3.6)

Combining the closure proof structure with the Defining Condition Principle (Sec-
tion 1.3.1), we get the following proof structure.

Proof. Assume that x ∈ E and y ∈ E.
By the definition of E, we know that x = 2k for some k ∈ Z and y = 2m for some

m ∈ Z.
(blah blah logic whatever)
Therefore, x+ y = 2r for some r ∈ Z, which means that x+ y ∈ E.

You may be wondering why we have to use different variable names on the right-hand
sides of x = 2k, y = 2m, and x + y = 2r, even though the definition of E only mentions
“ = 2k for some k ∈ Z”. The reason is that the condition that defines x being an even
number is really just a formal way of saying that x is twice some integer, and the value of
that integer will be different for different even numbers. (If you have some programming
experience, another way of understanding why we need different variable names here is that

8 CHAPTER 1. HOW TO THINK ABOUT MATHEMATICS

the k appearing in the definition of E is a local variable only existing inside the definition,
so if you want to refer to “k” globally, you have to give a different name for each case in
which it appears.)

In any case, as you’ll see, it’s definitely worth learning the structure of a closure proof,
as you’ll use it in several different places in this book.

1.3.6 Set containment and equality

Several times in this book, you’ll be asked to prove that two sets are equal. Here’s one
example of the kind of statement you might have to prove using a set equality proof. (This
example is both somewhat artificial and a bit overly complicated, to illustrate a number of
things at once.)

Theorem 1.3.6. Let

A = {n ∈ Z | n = 6k for some k ∈ Z} ,
B = {n ∈ Z | n = 10ℓ for some ℓ ∈ Z} ,
C = {n ∈ Z | n = 30m for some m ∈ Z} .

(1.3.7)

Then A ∩B = C.

If you haven’t seen much about sets before, or if it’s been a while, there’s a lot to unpack
in Theorem 1.3.6. Here are the definitions you need to understand the statement.

Definition 1.3.7. Let A and B be sets. We define

A ∩B = {x | x ∈ A and x ∈ B} ,
A ∪B = {x | x ∈ A or x ∈ B} .

(1.3.8)

That is, the intersection A ∩B is defined by AND, and the union A ∪B is defined by OR.

Definition 1.3.8. To say that a set A is contained in another set B, or alternately, that
A is a subset of B, written A ⊆ B, means that every element of A is an element of B. In
other words, A ⊆ B means that if x is an element of A, then x is also an element of B. To
say that two sets A and B are equal means that A ⊆ B and B ⊆ A.

The main virtue of Definition 1.3.8 is that it turns set containment into an if-then
statement, and set equality into two if-then statements. For example, here’s the how the
structure of the proof of Theorem 1.3.6 goes on first pass.

Part of the proof of Theorem 1.3.6. First, we show that A∩B ⊆ C. Assume that x ∈ A∩B.

(using the definitions of A, B, and C, blah blah)

Therefore, x ∈ C.

On the other hand, we also show that C ⊆ A ∩B. Assume x ∈ C.

(using the definitions of A, B, and C again, yadda yadda)

Therefore, x ∈ A ∩B.

1.3. SETS, THEOREMS, AND PROOFS 9

If we add in the definition of intersection and the definitions of A, B, and C, we get:

More of the proof of Theorem 1.3.6. First, we show that A ∩ B ⊆ C. Assume that x ∈
A ∩B. Therefore, x = 6k and x = 4ℓ for some k, ℓ ∈ Z.

(apply some number theory)
It follows that x = 12m for some m ∈ Z, and therefore, that x ∈ C.
On the other hand, we also show that C ⊆ A ∩B. Assume x ∈ C. Therefore, x = 12m

for some m ∈ Z.
(using the definitions of A, B, and C again — this is the less difficult direction)
It follows that x = 6k and x = 4ℓ for some k, ℓ ∈ Z, and therefore, that x ∈ A ∩B.

If you’ve seen some of the fundamental facts about prime numbers before somewhere,
try finishing the proof yourself.

Remark 1.3.9. Sometimes students try to do set equality proofs by trying to combine
set-builder definitions like those in (1.3.7) directly, without considering individual elements
one at a time. That approach doesn’t save much time or space, is harder to read than the
“one element at a time” approach, and tends to produce more mistakes. So please, stick
with one element at a time — you’ll thank me later. (Or at least anyone who has to read
your proofs will thank me.)

1.3.7 Induction proofs

Let me say right away that you will only rarely be asked to do any induction proofs in this
book, so in some sense, you don’t really need to understand induction to use this book. On
the other hand, we’ll actually use induction a few times in some key proofs, so we’ll give
a brief explanation of induction here to avoid giving the impression that there’s something
mysterious or impenetrable going on with those proofs.

In a nutshell, induction is the following axiom, which we assume as part of our back-
ground mathematical language.

Axiom 1.3.10 (Induction). Suppose T (n) is a sequence of theorems (mathematical state-
ments) indexed by a variable n, and suppose that:

� (Base case) We can prove that T (0) is true.

� (Induction step) For n ≥ 0, we can prove that if T (n) is true, then T (n+ 1) is true.

Then the axiom of induction says that we consider T (n) to be proven for all n ≥ 0.

Now, once you really understand induction, one of your first reactions might be that
there’s no reason for induction to be an extra axiom. For if we know that T (0) is true and
that T (n) always implies T (n+ 1), we can then reason that

T (0) ⇒ T (1) ⇒ T (2) ⇒ · · · ⇒ T (n) ⇒ T (n+ 1) ⇒ . . . , (1.3.9)

And so T (k) holds for all nonnegative integers k. Seems obvious when you look at it that
way, right? What’s all this business about needing an extra axiom?

10 CHAPTER 1. HOW TO THINK ABOUT MATHEMATICS

The catch is that (1.3.9) is actually an infinite proof, if we are to prove T (k) for all k,
and the rules of math don’t allow for infinite proofs, in general. You may therefore find it
helpful to think of induction as one particular kind of infinite proof that we allow.

Finally, one way in which induction is often applied, even if you’re not that interested in
proof, is when we use what is know as an inductive definition. To give a concrete example,
we can define n! (a.k.a. “n factorial”) for all integers n ≥ 0 by declaring that

0! = 1,

(n+ 1)! = (n+ 1)n! for n ≥ 0.
(1.3.10)

Induction is used here to show that since:

� 0! is defined; and

� If n! is defined, then (n+ 1)! is defined;

we therefore can be assured that k! is defined for all k ≥ 0.

Note that one immediately useful thing about inductive definitions, and sometimes even
proofs by induction, is that you can often think of them as recursive algorithms. For
example, applying (1.3.10) repeatedly tells us that

5! = 5(4!) = 5 · 4(3!) = 5 · 4 · 3(2!) = 5 · 4 · 3 · 2 · 1! = 5 · 4 · 3 · 2 · 1 · 1. (1.3.11)

This example displays two important features of recursive algorithms. On the one hand,
recursive algorithms can be written with very few lines of code; in fact, (1.3.10) is essentially
complete code for the factorial function. On the other hand, the actual details of the
computation in (1.3.11) show that recursive algorithms can require much more space than
the usual iterative algorithms. For a discussion of how to make recursive algorithms efficient,
see (??).

1.3.8 Functions, one-to-one, and onto

definition of function

domain and codomain notation

codomain versus range

In Definitions 1.3.11–1.3.13, let X and Y be sets, and let f : X → Y be a function.

Definition 1.3.11. To say that f is one-to-one, or injective, means that for x1, x2 ∈ X, if
f(x1) = f(x2), then x1 = x2.

Definition 1.3.12. To say that f is onto, or surjective, means that for every y ∈ Y , there
exists some x ∈ X such that f(x) = y.

Definition 1.3.13. To say that f is bijective means that f is one-to-one and onto.

1.4. NUMBER SYSTEMS 11

1.3.9 Invertibility

definition of inverse
next should be better: inverse if and only if bijective.

Theorem 1.3.14. Let X and Y be sets, and let f : X → Y be a bijective function. Then
we can define a function f−1 : Y → X by saying that for all y ∈ Y ,

f−1(y) = the unique x ∈ X such that f(x) = y. (1.3.12)

Furthermore, for all x ∈ X, f−1(f(x)) = x, and for all y ∈ Y , f(f−1(y)) = y.

We call the above function f−1 the inverse of f . Note that the last statement of the
theorem means that f and f−1 reverse each other’s effects, or undo each other.

Proof. We first have to show that f−1 is well-defined (i.e., defined unambiguously), and
the key point is whether the right-hand side of (1.3.12) makes sense. However, on the one
hand, since f is onto, there is some x ∈ X such that f(x) = y; and on the other hand, if
f(x1) = y and f(x2) = y for x1, x2 ∈ X, then since f is one-to-one, x1 = x2, which means
that the x ∈ X such that f(x) = y is unique. It follows that f−1 is well-defined.

As for the final statement, on the one hand, if x ∈ X and y = f(x), then

f−1(f(x)) = f−1(y) = x, (1.3.13)

since x is the (unique) element of X such that f(x) = y. On the other hand, if y ∈ Y and
f−1(y) = x, then

f(f−1(y)) = f(x) = y, (1.3.14)

where the last equality holds by definition of f−1. The theorem follows.

1.4 Number systems

Every theory course, and especially every algebra course, needs to choose a starting point,
and ours is, roughly speaking, that we’ll take as given everything you learned up through
high school algebra, at least in terms of “facts.” (A more advanced abstract algebra course
would actually assume less, as one important part of such a course is to reconstruct what
you learned up through high school on a firmer logical foundation.)

For example, we’ll assume you’re familiar with the natural numbers and the integers:

N = {1, 2, 3, . . . } , Z = {. . . ,−2,−1, 0, 1, 2, . . . } . (1.4.1)

Note that we use the convention of starting N with 1 instead of starting with 0.*

You should also be familar with the rational numbers:

Q =

{
k

n

∣∣∣∣ k, n ∈ Z, n ̸= 0

}
. (1.4.2)

*Apologies to fans of starting with 0 — you gotta choose one of the two conventions, right?

12 CHAPTER 1. HOW TO THINK ABOUT MATHEMATICS

In other words, the rationals Q are precisely all numbers formed as the legitimate (thus the
condition n ̸= 0) ratio of two integers. If you’re in a fussy mood, you might observe that
(1.4.2) is not a definition per se, just a list of the numbers within the real numbers that
happen to be rational — to which we reply, buckle up, friend, you’re going to find this book
to be pretty un-fussy by your standards.

Speaking of the real numbers, in this book, we will all agree to pretend that we know
what the real numbers R are. Which is obvious unless you think about it: You’ve used
them all your life, you actually used deep properties about them when you took calculus,
they form the number line, they’re all possible numbers that can be expressed as a decimal,
finite or infinite. . . sure, that all sounds fine! So we’ll just all agree to avoid unpleasant
questions like “What is the actual, precise definition of the real numbers?”.�

Finally, we’ll assume that at some point you have seem the complex numbers C, or at
least that you have some vague memory of i =

√
−1. We’ll have much more to discuss

about complex numbers in Chapter 9.

Again, if anything in this chapter seems unfamilar, or didn’t make sense on first reading,
don’t worry too much — there will be plenty of chances to get to know this “background”
material later by using it in other contexts. The important point is that you have now at
least seen the material once.

In any case, that’s enough throat-clearning. Let’s get started! As they tell you just
before you go off an island adventure in Animal Crossing :

Go catch some bees and chop some trees!

— Wilbur (the Dodo Airlines pilot), Animal Crossing New Horizons

�This question is the heart of introductory analysis, one of the more difficult classes in the standard
undergraduate math curriculum.

Chapter 2

Faster: The Euclidean Algorithm

We might call [Euclid’s algorithm] the granddaddy of all algorithms, because it
is the oldest nontrivial algorithm that has survived to the present day.

— The Art of Computer Programming, vol. 2, Donald E. Knuth

2.1 Divisibility

Usually we’ll start each chapter on applications with a motivating problem from the real
world. However, we’re still warming up here, so instead, let’s start with what might look
like an easy question.

Ask Yourself 2.1.1. What are all of the divisors of 12?

Ask Yourself 2.1.2. No, seriously, did you really think about Ask Yourself 2.1.1? Maybe
even write down an answer (at least in your head), and then come back to reading this
book.

Most probably, you answered 1, 2, 3, 4, 6, 12, the correct grade-school answer. However,
here are some answers to Ask Yourself 2.1.1 that you might not have thought about.

� First, since 12 = (−4)(−3), if you allow the use of negative numbers, −4 divides 12.

� Remember i =
√
−1? If we allow the use of i, then since 12 = (1 − i)(6 + 6i), 1 − i

divides 12.

� Furthermore, since 12 = (17)

(
12

17

)
, if you allow the use of rational numbers, 17

divides 12.

� Most outrageously, since 12 = (π)

(
12

π

)
, π divides 12; in fact, if you allow the use of

real numbers, any nonzero real number divides 12.

13

14 CHAPTER 2. FASTER: THE EUCLIDEAN ALGORITHM

In short, Ask Yourself 2.1.1 is maybe not quite as straightforward as it might look,
because the question doesn’t specify which numbers we’re allowed to use. In fact, to get
an unambiguous answer to many of the questions we consider in this book, we first need
to specify which numbers we’re allowed to use in our answer. We therefore come to the
following idea.

Not a Definition 2.1.3. Suppose R is some system of numbers like Z, Q, R, or C. To
say that we are working in the ring R means that we are allowed to use numbers in R, and
only numbers in R, in our computations, explanations, and so on. Phrases like “over the
ring R” have a similar meaning.

Note that Not a Definition 2.1.3 is too vague to be a real mathematical definition; for
example, what does “system of numbers” mean, exactly? However, I promised to avoid
abstract nonsense until it’s absolutely necessary, so we’ll stick with this non-definition until
Chapter 4. For now, the most important thing is to absorb the idea of a ring as the set
of all allowable numbers in a given situation. It may also be helpful to think of the word
“ring” in the sense of a boxing ring or wrestling ring: That is, when we work in the ring R,
R denotes the arena in which the game is played.*

Anyway, now that you have at least a vague idea of what a ring is, here’s a precise
definition of divisibility over the integers.

Definition 2.1.4. To say that an integer d divides an integer n in Z, or alternately, that d
is a divisor of n, means that n = qd for some q ∈ Z (i.e., some integer q). When the context
is clear, we omit “in Z” and just say that a divides n.

In other words, Definition 2.1.4 establishes the convention that for now, when we talk
about divisors, we work in the ring Z. Be warned, soon enough we’ll look at divisibility in
other contexts, and use other definitions! But again, for now, we’ll stick with the integers.

Example 2.1.5. Returning to Ask Yourself 2.1.1, under Definition 2.1.4, the divisors of
12, in order from least to greatest, are: −12, −6, −4, −3, −2, −1, 1, 2, 3, 4, 6, and 12.

I’m sure you find the answer in Example 2.1.5 a bit unsatisfying, and you may even be
asking yourself (or your instructor): “Can’t we just list the positive parts, or at least ±1,
±2, . . . , ±12?” And you’re right; more generally, if d divides n, then −d must also divide
n, and similarly, if d divides n, then d must divide −n (Problem 2.1.1). In other words, a
number and its negative have exactly the same divisibility properties. We therefore have
the following term to formalize that idea.

Definition 2.1.6. To say that integers a and b are associates means that a = ±b; equiva-
lently, we say that a and b are the same up to associates.

You might object that Definition 2.1.6 is just a very complicated way to say “plus or
minus”. And so far, you’d be right! But later on, we’ll see that a suitably generalized
definition of associate is useful when considering divisibility of polynomials, for example.

*This is a bit of a mathematical dad joke here; for the actual reason behind the name “ring”, see
Remark 4.2.5.

2.2. GREATEST COMMON DIVISORS 15

Now, I’ve promised in both the Introduction and in Chapter 1 that proofs are not the
focus of this book. However, there’s no better way to understand how to use a definition than
to use that definition in a proof, so the problems for this section all ask you to do relatively
short proofs using the definition of divisibility. See Section 1.3, especially Section 1.3.4, for
more about how to do proofs like these.

Problems

2.1.1. Suppose d and n are integers.

(a) Prove that if d divides n, then −d divides n. (In other words, assume that d divides n,
and use logic to conclude that −d divides n; see Section 1.3.4 for details of how that
works.)

(b) Prove that if d divides n, then d divides −n.

2.1.2. Suppose d, a, and b are integers. Prove that if d divides a and d divides b, then d
divides a+ b.

2.1.3. Suppose d, a, and b are integers. Prove that if d divides a, then d divides ab.

2.1.4. Suppose d, a, and b are integers. Prove that if d divides a and a divides b, then d
divides b.

2.1.5. What are all of the divisors of 0? Explain.

2.2 Greatest common divisors

To recap, the point of Section 2.1 is that we now have the language we need to state the
main problem of this chapter precisely. (Though to give a real-life perspective, sometimes
stating the problem precisely is half the battle.)

Definition 2.2.1. For integers d, a, and b, to say that d is a common divisor of a and b
means that d divides a and d divides b.

Since Defintion 2.2.1 marks our first compound definition, let’s pause to stop and think
about that for a while. (As you go on in this book, or even when you study more math later,
try to build the habit of doing a similar self-reflection whenever you encounter a definition
that refers back to another definition.)

Ask Yourself 2.2.2. What do you get when you combine Definitions 2.1.4 and 2.2.1?
What does the definition of common divisor look like if you have to start from scratch,
instead of being able to use Definitions 2.1.4? In other words, if you assume that d is a
common divisor of a and b, what do you know about d, a, and b?

16 CHAPTER 2. FASTER: THE EUCLIDEAN ALGORITHM

Definition 2.2.3. For integers a and b, at least one of which is not 0, the greatest common
divisor, or GCD, of a and b is exactly what it sounds like: the greatest integer d that is
a common divisor of a and b. We denote the greatest common divisor of a and b by the
symbol gcd(a, b).

Ask Yourself 2.2.4. When you encounter a new definition, always try small, weird, and
exceptional cases. What is gcd(6, 10)? Suppose a is a nonzero integer. What is gcd(a, 1)?
What is gcd(a, 0)? How about gcd(a, a)? Why don’t we give a definition for gcd(0, 0)? (See
Problem 2.1.5.) Can gcd(a, b) ever be negative? Zero? (See Problem 2.2.1.)

Now, Definition 2.2.3 is actually unambiguous in the precise mathematical language we
used, but in terms of ordinary language, there’s an interesting ambiguity related to the
following question:

Ask Yourself 2.2.5. Silly question: What’s bigger, −10000 or 3?

The thing is, Ask Yourself 2.2.5 is not entirely silly: If we account for signs, as we do in
Definition 2.2.3, then −10000 ≤ 3, and 3 is bigger, but in ordinary language, we might well
say that −10000 is bigger because |−10000| > |3|. It therefore falls to us to decide which
meaning of bigger we’re using in Definition 2.2.3.

So, because it turns out to be more consistent with what we’ll do later:

In Definition 2.2.3, we use “greatest” to mean “largest absolute value”.

This seemingly picky point actually has noticeable consqueneces! Most notably, it’s
equally correct to say that gcd(6, 10) = 2 or gcd(6, 10) = −2; more generally, “the” GCD
of two integers is only determined up to associates (Definition 2.1.6), i.e., up to ±. In fact,
we’ll see momentarily that this ambiguity comes up naturally, in that the most efficient
algorithm we’ll discuss for finding gcd(a, b) will sometimes produce a negative number as
an answer.

Remark 2.2.6. I know, I promised that this book would focus on things you can use to
make money, so what’s with all the fussiness about definitions? The catch is, as an applied
mathematician, you make money not just by applying the algorithm, or even coding the
algorithm, but also by understanding why it’s OK that your GCD algorithm gives an answer
of −2 instead of 2.

In any case, at last, we come to the motivating problem of this chapter.

Motivating Problem 2.2.7. Given nonzero integers a and b how can we efficiently com-
pute gcd(a, b)?

One of your first questions about Motivating Problem 2.2.7 might be, how can you make
money off of something you might have learned how to do in grade school? Well, the key
word in Motivating Problem 2.2.7 is efficiently, and to dig into that idea, we start with the
following question.

2.2. GREATEST COMMON DIVISORS 17

Ask Yourself 2.2.8. What is gcd(24, 105)? More importantly, how did you figure that
out, or in other words, what algorithm did you use?

The reason to consider Ask Yourself 2.2.8 is that Motivating Problem 2.2.7 isn’t very
interesting if you just want some algorithm for computing gcd(a, b), and you don’t care how
fast it is. For example, one method is:

Naive Algorithm 2.2.9. Let a and b be positive integers.

1. Make an ordered list of positive divisors of a.

2. Check which of those divisors of a also divides b, starting from the largest divisor and
going downwards.

The first common divisor found in step 2 will be gcd(a, b).

No problem! Unless, of course, you actually want to compute something practical:
Imagine using Naive Algorithm 2.2.9 to compute gcd(1723729, 8675309), let alone the 300-
digit computations you can actually use to make money. The problem with Algorithm 2.2.9
is that the amount of time required grows too rapidly as a function of the size of a and
b. More precisely, here’s an upper bound (and maybe even a reasonable estimate) for the
amount of time required. Suppose a, b ≤ n.

1. In Step 1 of Algorithm 2.2.9, one way to find all positive divisors of a is to consider
all d from 1 to a and divide a by d with remainder. This could take up to n divisions.

2. Then for Step 2, we do the same thing, except letting d go down the list of divisors
of a and dividing d into b. There are no more than n divisors of a, so again we have
no more than n divisions.

Therefore, in total, Naive Algorithm 2.2.9 takes at most 2n steps. It turns out not to
be super-hard to improve that estimate using only elementary facts about divisors (see
Problem 2.2.3). The real challenge comes in getting an exponential speedup, or more
precisely:

Motivating Problem 2.2.10. Suppose a, b are positive integers ≤ n. Can we find an
algorithm for computing gcd(a, b) that takes fewer than C log n steps, for some constant C?

Now, you’ve taken enough math courses in your life to know that I probably wouldn’t ask
a leading question like Motivating Problem 2.2.10 without a good answer, and that’s coming.
For now, the thing to realize about the appearance of log n in Motivating Problem 2.2.10 is
that you should think of log n as being roughly equivalent to the number of digits of n —
a much smaller rate of growth. See Section 2.6 for a more detailed and precise discussion.

18 CHAPTER 2. FASTER: THE EUCLIDEAN ALGORITHM

Problems

2.2.1. Let a and b be nonzero integers. Explain why gcd(a, b) must be positive.

2.2.2. Let a be a fixed positive integer.

(a) Write out the (positive) factors of a = 24 in increasing order, and do the same for
a = 45 and a = 36. What symmetry do you see around the halfway point of each list?

(b) Suppose d and q are positive integers, a = dq, and d ≤ q (i.e., d is the smaller of the
two factors of a). Explain how you can be sure (i.e, prove) that d ≤

√
a. (Suggestion:

What would happen if that were false?)

(c) Keeping part (a) in mind, explain how you can group the positive divisors of a into
pairs (d1, d2) with d1 ≤ d2 such that every divisor of a appears in exactly one such
pair. Explain why it follows that a has no more than 2

√
a positive divisors.

2.2.3. The goal of this problem is for you to create a Modified Naive Algorithm (a refine-
ment of 2.2.9) that requires fewer steps to compute gcd(a, b) than indicated by the analysis
given above.

Suppose N is the size of the largest possible integer that can be accepted as input. Use the
results of Problem 2.2.2 to figure out a Modified Naive Algorithm such that if a, b ≤ N ,
then the number of divisions required to compute gcd(a, b) is no more than C

√
N , where

C is some constant.

2.2.4. Let N > 1 be an integer. Recall from your K–12 education that N is prime when its
only positive divisors are 1 and N . Use the results of Problem 2.2.2 to figure out a Naive
Algorithm that requires no more than C

√
N divisions to determine whether N is prime.�

2.2.5. Let N > 1 be an integer. The goal of this problem is for you to create a Naive
Factorization Algorithm that gives the factorization of N into primes.

(a) Suppose N = qd, where q and d are positive integers, neither equal to 1. Explain why
both q and d must be ≤ N/2.

(b) Suppose N is not prime, and suppose d is the smallest possible divisor of N such that
d > 1. Explain why d must be prime.

(c) Use the results of Problem 2.2.2 to figure out a Naive Factorization Algorithm such
that if T (N) is the number of divisions required to run the algorithm on the input N ,
then

T (N) ≤ C
√
N + T (N/2). (2.2.1)

(d) Use (2.2.1) and induction on N to prove that T (N) ≤ C log2(N)
√
N .

�Professional-grade primality tests are much faster; for example, the AKS deterministic primality test
requires no more than C(logN)12 operations, an exponential speedup compared to the naive algorithm
described here, and algorithms that use randomness but work with very high probability are even faster.

2.3. DIVISION WITH REMAINDER 19

2.3 Division with remainder

The first building block of the Euclidean Algorithm for computing gcd(a, b) is a careful con-
sideration of something you’ve known since grade school, namely, division with remainder.
The details are important enough that we’ll express them as a theorem.

Theorem 2.3.1 (Division Theorem). Let a and d be positive integers. There exist unique
nonnegative integers q and r such that

a = dq + r, with 0 ≤ r < d. (2.3.1)

The word “unique” in the statement of the Division Theorem 2.3.1 means that there
is only one choice of nonnegative integers q and r that makes (2.3.1) true. Note that
“0 ≤ r < d,” or in other words, the fact that the remainder r is strictly less than the divisor
d, is an important part of (2.3.1); in fact, if we change that condition even slightly, the
theorem fails (Problem 2.3.1).

The Division Theorem is important enough that we’ll prove it twice, as each proof
generalizes in a different way, giving two different new algorithms. (Again, I promise you,
the theory is really the moneymaking stuff!)

Traditional proof. Start off with some initial guess for q with a− qd ≥ 0 (q = 0 works). If
r < d, then we’ve found q, r that makes (2.3.1) true; otherwise, increase q by 1, which is
still OK, because the new remainder will be

a− (q + 1)d = a− qd− d = r − d ≥ 0. (2.3.2)

We can’t go on increasing q forever, since there is some q such that qd > a, and we always
preserve r ≥ 0, so we’ll eventually get (2.3.1) to be true.

For a proof of uniqueness, see Problem 2.3.3.

Note that this “traditional proof” is really an induction argument (Section 1.3.7); if
you’re familiar with induction, you might want to try rewriting the proof that way (Prob-
lem 2.3.2). Practically speaking, the proof is also a non-practical algorithm for doing long
division (keep guessing a bigger q), illustrating the general principle that many induction
arguments are secretly recursive algorithms.

Our nontraditional proof uses the floor function, which you may have seen in calculus
as an example of a discontinuous function.

Definition 2.3.2. For a real number x, ⌊x⌋, or the floor of x, is the greatest integer less
than or equal to x.

For example, ⌊2.7⌋ = 2, ⌊13⌋ = 13, and ⌊−5.3⌋ = −6.

Nontraditional proof. Let q =
⌊a
d

⌋
. By the definition of floor (Definition 2.3.2), we know

that
q ≤ a

d
< q + 1, (2.3.3)

20 CHAPTER 2. FASTER: THE EUCLIDEAN ALGORITHM

so multiplying by d and subtracting qd, we get

0 ≤ a− qd < d. (2.3.4)

Letting r = a− qd yields (2.3.1), and uniqueness again follows from Problem 2.3.3.

Remark 2.3.3. If the nontraditional proof made more sense to you, you may be wondering:
Why would anyone bother with the induction-ish nonsense of the traditional proof? For
logical sticklers, the answer is that the fact that the floor function is well-defined (has an
unambiguous meaning) also relies on induction, or rather, its logical equivlent, the Well-
Ordering Principle. See, for example, Ross (specific ref to be added).

We’ll generalize our traditional proof later (Section 3.3), but right now, we’ll use our
nontraditional proof to obtain the following generalization of the Division Theorem.

Theorem 2.3.4 (Signed Division Theorem). Let a and d be nonzero integers. There exist
integers q and r such that

a = dq + r, with |r| ≤ |d|
2
. (2.3.5)

The idea behind the Signed Division Theorem is to replace the floor function with the
rounding function. There are actually many standard ways to define rounding off to the
nearest integer that differ in how they deal with half-integers, especially negative ones, so
we’ll just assume that we have some particular definition of ⌊x⌉ such that ⌊x⌉ is an integer
and

x− 0.5 ≤ ⌊x⌉ ≤ x+ 0.5, (2.3.6)

much as you’d expect.

Proof. Assume d > 0 and let q =
⌊a
d

⌉
(i.e.,

a

d
rounded to the nearest integer). By (2.3.6),

a

d
− 0.5 ≤ q ≤ a

d
+ 0.5, (2.3.7)

so multiplying by d and subtracting a, we get

−d

2
≤ qd− a ≤ d

2
. (2.3.8)

Letting r = a−qd yields |r| ≤ d

2
, as desired. When d < 0, the inequalities in (2.3.8) flip, but

the result in terms of absolute values is the same, and the theorem follows in general.

Since you’ve known how to do regular long division since grade school, but you probably
haven’t thought much about how to do division with smallest (signed) remainders, here’s

one method for dividing n by some positive d and getting a remainder no larger than
d

2
.

1. Do regular long division of n by d, to get n = qd+ r as usual.

2.3. DIVISION WITH REMAINDER 21

2. If r ≤ d

2
already, good, you’re done. Otherwise, if r >

d

2
, add 1 to the quotient q, to

get

n = (q + 1)d+ r′. (2.3.9)

Then since
d

2
< r < d, the new remainder r′ = r − d will be between −d

2
and 0, so

we get |r′| ≤ d

2
, as desired.

Problems

2.3.1. Give an example of positive integers a and d where there are two different pairs of
nonnegative integers q1, r1 and q2, r2 such that a = dqi + ri for both i = 1 and i = 2.

2.3.2. (If you’re familiar with induction.) Rewrite the “traditional proof” of the Division
Theorem as an induction argumennt.

2.3.3. (Proves Theorem 2.3.1) Suppose a and d are positive integers. The goal of this
problem is to prove the uniqueness part of Theorem 2.3.1 by showing that if we seemingly
have two possibilities q1, r1 and q2, r2 for the quotient and remainder in Theorem 2.3.1, then
in reality, those two possibilities actually have to be the same, i.e., q1 = q2 and r1 = r2.
(Not the most obvious way to prove there’s only one answer, but I hope it makes sense once
you hear the idea.)

(a) Suppose r1 and r2 are integers such that 0 ≤ r1 ≤ r2 < d. What is the largest possible
value that r2 − r1 could have? (Suggestion: Try drawing a picture of r1 and r2 on the
number line.)

(b) Now suppose that qi and ri (i = 1, 2) are integers such that

a = q1d+ r1, a = q2d+ r2, (2.3.10)

with 0 ≤ r1, r2 < d. Prove that r1 = r2 and q1 = q2. (Suggestion: By switching q1, r1
with q2, r2 if necessary, you can assume that r1 ≤ r2.)

2.3.4. In the Signed Division Theorem 2.3.4, the choice of quotient q and remainder r
aren’t unique, but they almost are.

(a) Find integers a and d such that there are at least two possible choices of quotient q
and remainder r that satisfy the condition (2.3.5).

(b) When do you get non-unique quotient and remainder in the Signed Division Algorithm?
Find a condition on a and d that describes exactly when this happens.

(c) Prove your assertion in part (b). That is, state a theorem like “The Signed Division
Algorithm has a unique quotient and remainder unless. . . ” and prove your theorem.

22 CHAPTER 2. FASTER: THE EUCLIDEAN ALGORITHM

2.4 The Euclidean Algorithm

At last, after much throat-clearning, we come to the Euclidean Algorithm for computing
gcd(a, b).

Algorithm 2.4.1 (The Euclidean Algorithm). Suppose a and b are positive integers and
a > b.

1. Initialize. Let r−1 = a and r0 = b.

2. Main loop. For i = 1, 2, . . . , apply the Division Theorem to divide ri−2 by ri−1 with
quotient qi and remainder ri, or in other words,

ri−2 = qiri−1 + ri with 0 ≤ ri < ri−1. (2.4.1)

Stop, after N divisions, as soon as you get a remainder rN = 0.

3. Claim. The last nonzero remainder rN−1 is exactly gcd(a, b).

As we will often do in this book, we end the above algorithms with a “claim” as to the
correctness of our answer. We use the word “claim” to indicate that it may not be clear
to you why that should be the correct answer. (Indeed, it probably shouldn’t be clear to
you, if you’re being skeptical and honest.) Therefore, to ensure that the algorithm really
does work, we’ll prove it as a theorem. Again, rest assured, this is not the sort of thing
this book will ask you to produce — the proof is not at all obvious! But I do hope that
as an informed consumer of abstract algebra, after some work, you’ll be able at least to
understand the proof.

First, though, it may help to lay out the algorithm visually and do an example or two.
If we write out the iterations of the Euclidean Algorithm 2.4.1 in order, we get something
like:

r−1 = q1r0 + r1 (0 ≤ r1 < r0)

r0 = q2r1 + r2 (0 ≤ r2 < r1)

r1 = q3r2 + r3 (0 ≤ r3 < r2)

...

rN−3 = qN−1rN−2 + rN−1 (0 ≤ rN−1 < rN−2)

rN−2 = qNrN−1

(2.4.2)

Notice how each particular remainder rn moves down and to the left at each stage, something
that is useful to remember when doing the algorithm by hand.

Example 2.4.2. To give a moderate-sized example, applying the Euclidean Algorithm to

2.4. THE EUCLIDEAN ALGORITHM 23

gcd(441, 192), we get:
441 = 2(192) + 57

192 = 3(57) + 21

57 = 2(21) + 15

21 = 1(15) + 6

15 = 2(6) + 3

6 = 2(3)

(2.4.3)

Since 3 is the last nonzero remainder, gcd(441, 192) = 3, and the algorithm finishes in 6
steps.

Ask Yourself 2.4.3. Make up your own examples by randomly choosing 3-digit positive
integers a and b and applying the Euclidean Algorithm. (One thing this exercise shows is
that it’s not easy to come up with an example where the algorithm takes more than a few
steps!)

Now that you’ve had the chance to get better acquainted with the Euclidean Algorithm,
it’s time to prove that it works as advertised. In particular, we need to explain how we can
be sure the algorithm actually stops!

Theorem 2.4.4. The Euclidean Algorithm 2.4.1 terminates after finitely many steps, and
the result is actually equal to gcd(a, b).

Proof. Keeping the notation of the Euclidean Algorithm 2.4.1, since each rn is a nonnegative
integer and rn < rn−1, we see that the the number of steps in the Euclidean Algorithm is
bounded above by r0 = b, so it will eventually stop. (We’ll get a much better speed estimate
in Section 2.6.)

For the correctness of the answer, let d be a common divisor of a and b. Starting from
the top of (2.4.2), since d divides both a = r−1 and b = r0, and

r1 = r−1 − q1r0, (2.4.4)

we see that d also divides r1, by Problems 2.1.2 and 2.1.3. Next, since d divides both r0
and r1, d must divide r2. Continuing all the way down (2.4.2), we see that d divides rN−1.
In particular, d ≤ rN−1, which means that rN−1 is greater than or equal to any common
divisor of a and b.

On the other hand, let c = rN−1. Starting from the bottom of (2.4.2), we first see that c
divides rN−2. (By the definition of divisibility!) Moving up a line, since c divides rN−2 and
rN−1 = c, we see that c also divides rN−3, again by Problems 2.1.2 and 2.1.3. Continuing
up to the top, we eventually see that c divides both r0 = b and r−1 = a, or in other words,
c is a common divisor of a and b. Therefore, since c is also greater than or equal to any
common divisor of a and b, c = gcd(a, b).

Not a thing that makes money directly, but I can’t resist pointing out one non-obvious
fact that follows immediately from the proof of Theorem 2.4.4.

24 CHAPTER 2. FASTER: THE EUCLIDEAN ALGORITHM

Corollary 2.4.5. For positive integers a and b, any common divisor of a and b is also a
divisor of gcd(a, b).

Now, experience shows that the Euclidean Algorithm is fast, and we’ll quantify that
statement later in Section 2.6. However, you should always look to make your algorithnm
faster — witness the following variation.

Algorithm 2.4.6 (The Signed Euclidean Algorithm). Suppose a and b are nonzero integers
and |a| > |b|.

1. Initialize. Let r−1 = a and r0 = b.

2. Main loop. For i = 1, 2, . . . , apply the Signed Division Theorem to divide ri−2 by ri−1

with quotient qi and remainder ri, or in other words,

ri−2 = qiri−1 + ri with 0 ≤ |ri| ≤
|ri−1|
2

. (2.4.5)

Stop, after N divisions, as soon as you get a remainder rN = 0.

3. Claim. The last nonzero remainder rN−1 is exactly gcd(a, b).

In other words, the Signed Euclidean Algorithm is exactly the same as the Euclidean
Algorithm, except we use smallest possible remainders instead of standard nonnegative
remainders. (For hand calculations, see also the discsussion at the end of Section 2.3.)

Example 2.4.7. Applying the Signed Euclidean Algorithm to gcd(441, 192), we get:

441 = 2(192) + 57

192 = 3(57) + 21

57 = 3(21) + (−6)

21 = (−3)(−6) + 3

−6 = (−2)(3)

(2.4.6)

Compare Example 2.4.2.

Though Example 2.4.7 is not much faster than Example 2.4.2, Kronecker showed (in
the 1800s!) that the Signed Euclidean Algorithm is always at least as fast as the standard
one [?], so hey, why not, right? The worst-case time required is also slightly easier to analyze
for the Signed Euclidean Algorithm; see Section 2.6. In any case, we note for the record
that thing does, indeed, work as advertised.

Theorem 2.4.8. The Signed Euclidean Algorithm 2.4.6 terminates after finitely many
steps, and the result is actually equal to gcd(a, b).

Proof. The proof is almost the same as the proof of Theorem 2.4.4, so it’s left to you; see
Problem 2.4.3.

2.5. BEZOUT’S IDENTITY AND EUCLIEAN REWRITING 25

Problems

2.4.1. Use the Euclidean Algorithm to compute the following gcd’s.

(a) gcd(135, 85)

(b) gcd(1047, 470)

(c) gcd(1615, 1410)

(d) gcd(1502, 586)

(e) gcd(23009, 19670)

(f) gcd(50739, 16301)

2.4.2. Same as Problem 2.4.1, but use the Signed Euclidean Algorithm 2.4.6.

2.4.3. Modify the proof of Theorem 2.4.4 to obtain a proof of Theorem 2.4.8. Does anything
need to be changed at all? Where, if anywhere, does the original proof rely on the fact that
all of the numbers involved are nonnegative? Look for places where you have to use absolute
values to compare sizes.

2.5 Bezout’s identity and Eucliean Rewriting

We pause here for what might appear right now to be a digression, but turns out to be a
very useful calculation. (If you want to look ahead for some motivation, see Section 3.1.)

Theorem 2.5.1 (Bezout’s Identity). Let a and b be nonzero integers. The equation

ax+ by = gcd(a, b) (2.5.1)

has a solution x, y ∈ Z.

Proof. We prove Bezout’s identity by providing an algorithm to compute one such solution
x, y ∈ Z. Retaining the notation of the Euclidean Algorithm 2.4.1, we see that if we define
an integer linear combination of a and b to be a number of the form ax + by for some
x, y ∈ Z, then our goal is to show that rN−1 = gcd(a, b) is an integer linear combination of
a and b.

To start, note that r−1 = a and r0 = b are each integer linear combinations of a and b,
and note that we can rewrite the first equation of the Euclidean Algorithm (see (2.4.2)) as

r1 = r−1 − q1r0. (2.5.2)

Substituting r−1 = a and r0 = b, and combining coefficients on the right-hand side of (2.5.2),
we see that r1 is also an integer linear combination of a and b. By the same reasoning, since
r0 and r1 are integer linear combinations of a and b, and the second equation of (2.4.2) can
be rewritten as

r2 = r0 − q2r1, (2.5.3)

26 CHAPTER 2. FASTER: THE EUCLIDEAN ALGORITHM

we see that r2 is an integer linear combination of a and b. Continuing similarly down the
equations in (2.4.2), we eventually get that rN−1 = gcd(a, b) is an integer linear combination
of a and b, and the theorem follows.

We call the algorithm in the proof of Bezout’s identity Euclidean Rewriting. (Other
authors often use the name Extended Euclidean Algorithm to describe an equivalent algo-
rithm.) To write out that algorithm explicitly:

Algorithm 2.5.2 (Euclidean Rewriting). Suppose a and b are positive integers. To solve
the equation ax+ by = gcd(a, b) for x and y:

1. Perform the Euclidean Algorithm (Algorithm 2.4.1) to calculate gcd(a, b). We use the
notation of Algorithm 2.4.1 in the rest of what follows.

2. Rewrite each step of the Euclidean Algorithm in the form

ri = ri−2 − qiri−1. (2.5.4)

3. For i going from 1 to N − 1, since ri−2 and ri−1 have already been expressed as
integer linear combinations of a and b, use (2.5.4) to rewrite ri as an integer linear
combination of a and b. (Note that in the first step, we use the fact that r−1 = a and
r0 = b.)

Example 2.5.3. We use Euclidean Rewriting to find an integer solution to 34x + 25y =
gcd(34, 25). First off, the Euclidean Algorithm gives:

34 = 1(25) + 9

25 = 2(9) + 7

9 = 1(7) + 2

7 = 3(2) + 1

2 = 2(1),

(2.5.5)

so gcd(34, 25) = 1.
Next, we rearrange (2.5.5) to solve for the remainder in each step except the last, where

there is no remainder:
9 = 34− 1(25)

7 = 25− 2(9)

2 = 9− 1(7)

1 = 7− 3(2).

(2.5.6)

Rewriting (2.5.6) from the top, starting with 34 = a and 25 = b, we then get:

9 = 34− 1(25) = a− b

7 = 25− 2(9) = b− 2(a− b) = 3b− 2a

2 = 9− 1(7) = (a− b)− 1(3b− 2a) = 3a− 4b

1 = 7− 3(2) = (3b− 2a)− 3(3a− 4b) = 15b− 11a.

(2.5.7)

2.6. A CRASH COURSE IN COMPLEXITY 27

So our final answer is x = −11, y = 15; or in other words, −11(34) + 15(25) = 1. (Check
this!)

Finally, the following consequence of Bezout’s Identity will also be useful later.

Corollary 2.5.4. Let a and b be nonzero integers. For c ∈ Z, the equation

ax+ by = c (2.5.8)

has a solution x, y ∈ Z if and only if gcd(a, b) divides c.

Proof. Let d = gcd(a, b). On the one hand, if ax + by = c, since d divides both a and b,
it follows by Problems 2.1.2 and 2.1.3 that d also divides c. On the other hand, suppose d
divides c. Then since c = dq for some q ∈ Z, and ax + by = d for some x, y ∈ Z (Bezout’s
Identity), we have that a(xq) + b(yq) = c.

In any case, to recap, the key takeaway from this section is:

To find integer solutions x, y to ax + by = c, use the Euclidean Algorithm and
Euclidean Rewriting.

Problems

2.5.1. For the following pairs of integers a, b, use Euclidean Rewriting to solve the equation
ax+ by = gcd(a, b).

(a) a = 161, b = 70.

(b) a = 78, b = 53.

(c) a = 58, b = 51.

(d) a = 169, b = 125.

(e) a = 79, b = 56.

(f) a = 510, b = 208.

2.6 A crash course in complexity

At this point, you may be (rightfully) saying, “Well, this is all well and good, with the
history and the algorithm and whatever, but you promised me that I could make some
money here, pal!” And in this section, we’ll finally get to that, but we have to introduce
one last big idea.

Definition 2.6.1. The complexity of an algorithm is the (estimated) time or space that
an algorithm needs to finish, given an input of size n. Often, this description comes in the
form of a worst-case time estimate T (n), that is, a function T (n) such that, given an input
of size n, the algorithm is guaranteed to finish within T (n) steps (though possibly sooner).

28 CHAPTER 2. FASTER: THE EUCLIDEAN ALGORITHM

Complexity is important to us because many, or maybe most, of the problems we consider
can be solved by easier methods that are too slow to work in practice. (Remember the
grade-school GCD algorithms from Ask Yourself 2.2.8?) What makes the algorithms we
discuss money-making is the fact that they are faster, and often much faster, than easier
methods. We can sometimes measure this kind of speed-up by doing computer experiments,
but it often helps to have some conceptual way to discuss the speed of an algorithm. To be
precise, the following terminology can be used to give both a quantitative and a qualitative
description of “worst-case time” function T (n).

Definition 2.6.2. Let T (n) and f(n) be real-valued functions with domain the natural
numbers N (in fancy function notation, T : N → R and f : N → R). To say that
T (n) = O(f(n)) means that there exists some constant C such that T (n) ≤ Cf(n) for all
n ∈ N. The notation O(f(n)) is known as big O notation.

To make big O notation useful, we need to understand some standard “comparison
functions” f(n) that we can use to describe our worst-case time functions T (n). More
specifically, the following idea helps in sorting out the relative sizes of comparison functions.

Definition 2.6.3. Suppose f(n) and g(n) are real-valued functions on n. To say that
f(n) << g(n) means that

lim
n→∞

f(n)

g(n)
= 0. (2.6.1)

We also say that g(n) dominates f(n) asymptotically.

If you don’t remember exactly what lim
n→∞

means, the point of (2.6.1) is really just that

as n gets very large, g(n) is far bigger than f(n). With that mind, we come to the following
theorem from calculus�, which we state without proof.

Theorem 2.6.4 (The Asymptotics Theorem). For fixed constants C > 0, 0 < p < q, and
1 < a < b, we have that

C << log n << np << nq << an << bn << n!. (2.6.2)

In particular, constants are dominated by logs are dominated by powers are dominated by
exponentials are dominated by factorials.

In other words, in terms of growth as n approaches ∞, logarithmic growth (log n)
is much smaller than polynomial growth (np) is much smaller than exponential growth
(an) is much smaller than combinatorial growth (n!). An algorithm with worst-case time
T (n) = O(log n) is called a logarithmic-time algorithm, and polynomial-time, exponential-
time, and combinatorial-time algorithms are defined similarly.

To give an idea of which times are useful in practice, exponential-time algorithms are
generally regarded as hopeless (in terms of “Will this finish before we all die?”) and
combinatorial-time algorithms are really hopeless (“Will this finish before the universe

�Or really, analysis, the theory of calculus, which explains why you may not have seen this before.

2.6. A CRASH COURSE IN COMPLEXITY 29

ends?”). Polynomial-time algorithms are usually classified as computationally tractable,
but even O(n3) algorithms can be impractical for some problems, given the size of the n
that you often need to make money.

When your input is a number n, the best kind of result you can hope for is a log-time
algorithm, because log n is roughly the number of decimal digits in n. In other words, an
O(log n) algorithm solves the problem in a time proportional to the amount of time it takes
to type in the input! It’s also worth knowing that since (remember the change of base
formula for logs?)

log n = (log 2)(log2 n) = (log e)(lnn), (2.6.3)

any log function differs from log n only by a constant multiple, which means that O(loga n)
means the same thing no matter what the base a is.

We next come to one more fact from calculus§ that is helpful in studying complexity,
and that we again state without proof.

Theorem 2.6.5 (The Addition Principle). If f(n) << g(n), then f(n) + g(n) = O(g(n)).

In other words, the slowest part of an algorithm dominates its runtime, so you can ignore
the faster parts.

With the above facts in hand, we can now show that the Euclidean Algorithm runs in
O(log n) time, where n is the smaller of a and b; in other words, this ancient algorithm,
literally thousands of years old, is as fast as you could ask a numerical algorithm to be!
We’ll start with the Signed Euclidean Algorithm, where the idea is a little clearer.

Theorem 2.6.6. Let a, b, and n be nonzero integers with |a| ≥ |b| and |b| ≤ n. Using
the Signed Euclidean Algorithm to compute gcd(a, b) finishes in O(log n) time, or more
precisely, requires O(log n) division-with-remainder steps to finish.

Note that you should be careful with units in complexity estimates; for example, our
time estimate treats division-with-remainder as a step taking a constant amount of time,
which would not be the case if we were using some kind of division algorithm that depended
on the size of the integers in question.

Proof. In the notation of the Signed Euclidean Algorithm 2.4.6, we see that for 1 ≤ i ≤

N − 1, |ri| ≤
|ri−1|
2

. Therefore,

|rN−1| ≤
|rN−2|

2
≤ |rN−3|

22
≤ · · · ≤ |r0|

2N−1
=

|b|
2N−1

(2.6.4)

Now, since rN−1 is a nonzero integer, |rN−1| ≥ 1. Therefore,

n ≥ |b| ≥ 2N−1 |rN−1| ≥ 2N−1, (2.6.5)

§Again, really analysis.

30 CHAPTER 2. FASTER: THE EUCLIDEAN ALGORITHM

so taking log2 of both sides gives
N − 1 ≤ log2 n, (2.6.6)

or N ≤ log2 n+1. By the Addition Principle, N (the number of steps required to finish) is
O(log n).

A slightly more complicated argument (Problem 2.6.5) gives the analogous result for
the standard Euclidean Algorithm.

Theorem 2.6.7. Let a, b, and n be positive integers with a ≥ b and b ≤ n. Using the
Euclidean Algorithm to compute gcd(a, b) requires O(log n) division-with-remainder steps
to finish.

Proof. Problem 2.6.5.

Remark 2.6.8. The fact that the Euclidean Algorithm and the faster Signed Euclidean
Algorithm are both O(log n) algorithms makes an important point: Just because two al-
gorithms have the same “big-O” complexity doesn’t mean they have same speed. You can
hide a lot of improvements/problems in the constant in front!

In a similar vein, the problems that go with this section primarily focus on doing similar
kinds of big-O estimates for several other algoritms.

Speaking of which, it’s time for some good news and some bad news. The good news is
that we’ll close out this chapter by talking about some very specific and practical skills you
can pick up here that you can use to make money! The bad news is:

Real-life Application 2.6.9. One of the most important ways that you, as a human
being (as opposed to an algorithm or an AI) and a math student, can make money, is
to understand why things work, and explain that reasoning to others. As of this writing,
understanding and explanation is not a task that (for example) AI will be able to do reliably
and correctly anytime soon, so there we go – job security! However, the catch is that to
be able to understand and explain for a living, you have to practice understanding and
explaining, and not just calculations. Therefore, the problems in this section require to
practice just that; that is, when you do big-O estimates in the problems, make sure you
explain the processes behind your big-O estimates, instead of just writing down context-free
calculations.

On a less meta note, we should also mention some ways you can use the Euclidean
Algorithm to make money.

Real-life Application 2.6.10. One source of real money-making power in the Euclidean
Algorithm lies in the following idea:

Roughly speaking, if you can reduce any numerical problem to the Euclidean Algo-
rithm, then you’re done.

2.6. A CRASH COURSE IN COMPLEXITY 31

One prominent recent example of this idea comes from the problem of factoring a number
n = pq, where p and q are large (hundreds of digits) prime numbers. As you may know,
most standard encryption depends on this problem being computationally intractable, so
if you can solve it, you can pretty much undo (say) Internet security as we know it (at the
time of this writing). Shor’s algorithm [?], which relies on a (still hypothetical, as of this
writing) quantum computer, factors n = pq in two steps:

1. (The hard step) With high probability, produce a numberm < n such that gcd(n,m) >
1.

2. (The easy step) Use the Euclidean Algorithm to compute gcd(m,n), which must be
either p or q.

Obviously, the (still mostly hypothetical) quantum computer part is the hard step, and
where the new ideas come in. Still, Shor’s algorithm wouldn’t work if it weren’t for the
“easy” step — solved thousands of years ago!

In fact, much of the rest of this book relies on using the Euclidean Algorithm and
its variants; see, for example, Chapters 3 and 7. However, to explain how and why the
Euclidean Algorithm is useful requires quite a bit more theory, so we’ll hold off on that
until later.

Problems

In the following problems, make sure you justify/explain each big-O estimate.

2.6.1. Suppose a and b are two n-digit numbers.

(a) Give a big-O estimate for the amount of time it takes the standard grade-school algo-
rithm to add a and b, taking the operation of adding two single-digit numbers as your
fundamental unit of time.

(b) Same, but for multiplying a and b, taking the operation of either adding or multiplying
two single-digit numbers as your unit of time. To simplify your estimate, ignore carry-
ing. (Carrying actually turns out to be one of the trickiest aspects of multiplication!
See (??) for a discussion.)

2.6.2. A classic children’s song starts: “99 bottles of beer on the wall, 99 bottles of
beer/take one down, pass it around, 98 bottles of beer on the wall,” and continues un-
til there are no more bottles of beer. Give a big-O estimate for the amount of time to takes
to finish the song, starting from n bottles of beer on the wall.

2.6.3. The traditional Christmas carol “The 12 Days of Christmas” has the following struc-
ture: On day 1, the singer gets one gift of type 1 (a partridge in a pear tree) from their true
love; on day 2, the singer gets two gifts of type 2 and one gift of type 1 (two turtledoves and
a partridge in a pear tree); and so on. Suppose this song can be extended to any arbitrary
number of days.

32 CHAPTER 2. FASTER: THE EUCLIDEAN ALGORITHM

(a) Give a big-O estimate of the time it takes to sing verse n, occurring on day n, as a
function of n. (Assume that it takes the same length of time to sing about each gift,
e.g., the eight maids a-milking takes the same length of time as the two turtledoves,
which in turn takes the same amount of time as whatever is gifted on day 2739.)

(b) Give a big-O estimate of the time it takes to sign the entire song, starting with verse
1 on day 1, and going all the way to verse n on day n.

(c) Switching gears, give a big-O estimate of the number of gifts the singer receives on
day n.

(d) Finally, give a big-O estimate of the total number of gifts the singer receives over the
entire song, going from day 1 through day n.

2.6.4. This problem requires familiarity with basic matrix operations. Use arithmetic op-
erations as your unit of time (i.e., the addition or multiplication of two numbers).

(a) Give a big-O estimate of the amount of time required to take the dot product of two
vectors of length n.

(b) Give a big-O estimate of the amount of time required to take the product of an n× n
matrix and an n× 1 column vector.

(c) Give a big-O estimate of the amount of time required to take the product of two n×n
matrices.

2.6.5. This problem shows that the standard Euclidean Algorithm is an O(log n) algorithm.

(a) In the notation of the Euclidean Algorithm 2.4.1, prove that for any n ≥ 1, rn ≤ rn−2

2
.

(Suggestion: Consider the cases rn−1 ≥
rn−2

2
and rn−1 <

rn−2

2
.)

(b) Imitate the proof of Theorem 2.6.6 to prove that the Euclidean Algorithm requires
O(log n) division-with-remainder steps to finish.

2.6.6. The goal of this problem is to estimate the complexity of multiplying two polynomials
with real coefficients (i.e., polynomials in the sense of high school). We take our fundamental
unit of time to be arithmetic operations in our real coefficients, i.e., one unit of time is one
multiplication of two real numbers or one addition of two real numbers. We don’t keep
track of multiplications of powers of x because if you think about how a polynomial would
actually be stored in memory, each power of x would be represented by a different location
in an array, and so “multiplying powers of x” is really just choosing a location where a real
number will be stored.

2.6. A CRASH COURSE IN COMPLEXITY 33

(a) To multiply two polynomials of degree 3, we do:

a3x
3 + a2x

2 + a1x+ a0
× b3x

3 + b2x
2 + b1x+ b0

a3b0x
3 + a2b0x

2 + a1b0x+ a0b0
a3b1x

4 + a2b1x
3 + a1b1x

2 + a0b1x
a3b2x

5 + a2b2x
4 + a1b2x

3 + a0b2x
2

a3b3x
6 + a2b3x

5 + a1b3x
4 + a0b3x

3

c6x
6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x+ c0

How many (real number) multiplications does this calculation require, and how many
(real number) additions?

(b) Generalize part (a) to give a big-O estimate of the total number of (real number)
multiplications and additions required to multiply two polynomials of degree n.

2.6.7. For each n, consider the following procedure on an n×n chessboard: Put 1 grain of
rice on the first square, 2 grains of rice on the second square, 3 grains on the third square,
4 grains on the 4th square, and so on, for each of the n2 squares on the board.

(a) For a 3 × 3 chessboard, how many total grains of rice end up on the board? Express
your answer as a sum or product.

(b) Given a big-O estimate of the total number of grains of rice that end up on an n× n
board. Express your answer in the form O(nk) for some constant k.

In Problems 2.6.8–2.6.9, we consider the problem of sorting a list a1, . . . , an of n distinct
numbers into ascending order, i.e., so that a1 < a@ < · · · < an. Note that sorting any list of
items that have a set order (e.g., words in alphabetical order) works pretty much the same
way; it’s just that sorting numbers is slightly easier to describe.

2.6.8. In this problem, we take the operation of compare-and-swap as our unit of com-
putational time, where one compare-and-swap applied to two numbers in a list determines
which number is bigger and possibly swaps their positions in the list.

Consider the following two algorithms. First, the largest-last algorithm takes a list
a1, . . . , ak of k numbers and moves them around until the largest number is in the last (kth)
position, as follows:

1. If a1 < a2, do nothing; if a! > a2, swap a1 and a2 so that the (new) a1 < a2.

2. Same, but for a2 and a3, a3 and a4, all the way up to ak−1 and ak.

Second, the bubble-sort algorithm takes a list a1, . . . , an of n numbers and sorts them, as
follows:

1. Apply largest-last to the full list a1, . . . , an, putting the largest number in the nth
position.

34 CHAPTER 2. FASTER: THE EUCLIDEAN ALGORITHM

2. Apply largest-last to the (new) sublist a1, . . . , an−1, putting the second largest
number in the (n− 1)st position.

3. Same, but for a1, . . . , an−2, a1, . . . , an−3, and so on, down to a1, a2.

You may take it as given the largest-last and bubble-sort both work as advertised; the
goal of this problem is to find their time complexity.

(a) Try bubble-sort on the list 3, 5, 1, 4, 2. How many compare-and-swap operations
does that take?

(b) Given a big-O upper bound for the time, measured in compare-and-swap operations,
it takes to run bubble-sort on a list of length n. Explain your estimate(s).

2.6.9. In this problem, we take the operation of compare-and-move as our unit of compu-
tational time, where one compare-and-move applied to two numbers in two lists determines
which number is smaller and adds the smaller number to the end of a third list.

Consider the following two algorithms. First, the merge-lists algorithm takes two sorted
lists a1, . . . , ak and b1, . . . , bℓ and creates a new third list consisting of the elements of
{a1, . . . , ak, b1, . . . , bℓ} in sorted order, as follows.

1. Start with an empty list (list with nothing in it) as the new list.

2. Compare a1 and b1, and move the smaller of a1 and b1 to the new list, deleting that
smaller element from its original list and making that original list shorter. (This is the
compare-and-move operation.)

3. Repeat step 2 until one of the original lists runs out of elements, at which point the
other list can be appended to the new list.

Second, the merge-sort algorithm is a recursive algorithm that takes a list a1, . . . , an of
n = 2k numbers (k a nonnegative integer) and sorts them, as follows:

1. If n = 1 (i.e., we have a list of length 1), return the given list. Otherwise:

2. Apply merge-sort to the first half a1, . . . , an/2 of the list, returning a sorted list
a1, . . . , an/2.

3. Apply merge-sort to the second half a(n/2)+1, . . . , an of the list, returning a sorted
list a(n/2)+1, . . . , an.

4. Apply merge-lists to a1, . . . , an/2 and a(n/2)+1, . . . , an, returning a sorted list a1, . . . , an.

You may take it as given that merge-lists and merge-sort both work as advertised; the
goal of this problem is to find their time complexity.

(a) Try merge-sort on the list 8, 4, 6, 2, 7, 3, 5, 1. How many compare-and-move operations
does that take?

(b) Explain why applying merge-lists to two sorted lists a1, . . . , ak and b1, . . . , bℓ requires
at most k + ℓ compare-and-move operations.

2.6. A CRASH COURSE IN COMPLEXITY 35

(c) Now let T (n) be the maximum amount of time it takes to sort a list of length n = 2k.
Explain why

T (n) ≤ 2T (n/2) + n. (2.6.7)

(d) Use induction to prove that T (n) ≤ n log2(n) = k2k.

2.6.10. In this problem, we take the operation of dividing d into a, with remainder, as our
unit of computational time.

Consider the following recursive algorithm, prime-factors, that takes a positive integer N
as input and returns a list of its prime factors:

1. Starting with d = 2, 3, . . . , divide d into N to see if d is a divisor of N .

2. The first time we find a divisor d of N , apply prime-factors to N/d, and append the
factor d to the resulting output.

3. Otherwise, if we don’t find a divisor d for d ≤
√
N , then N is prime, and we return

the list containing exactly N .

(a) Try prime-factors on N = 60.

(b) Explain why prime-factors works as advertised. In particular, why is the first divisor
you find necessarily prime? Why do we only need to test d ≤

√
N? (Suggestion: See

Problems 2.2.2 and 2.2.4.)

(c) Let T (N) be the maximum amount of time it takes to run prime-factors on a number
of size at most N . Explain why

T (N) ≤ T (N/2) +
√
N. (2.6.8)

(d) Use (strong) induction on N ≥ 2 to prove that T (N) ≤ (2 +
√
2)
√
N . In other words,

prime-factors is an O(
√
N) algorithm.

2.6.11. Later: prove special cases of the Master Theorem: T (n) ≤ aT (n/b) + nd.

36 CHAPTER 2. FASTER: THE EUCLIDEAN ALGORITHM

Chapter 3

More: The Polynomial Euclidean
Algorithm

Give a small boy a hammer, and he will find that everything he encounters needs
pounding.

— Abraham Kaplan, The Conduct of Inquiry: Methodology for Behavioral
Science

If I had a hammer
I’d hammer in the morning
I’d hammer in the evening
All over this land

— Pete Seeger, If I Had a Hammer

As an algebraist, I have to come down on Mr. Seeger’s side on the hammer question.
Some of the best algebra comes from taking a tool or solution (the proverbial “hammer”)
and thinking, “What else can we do with this?” In this chapter, we take the Euclidean
Algorithm developed in the previous chapter and generalize it to an even more useful setting,
that of polynomials with coefficients in a field. In doing so, we illustrate yet again the key
moneymaking process of applied and industrial algebra:

Abstraction ⇒ Simplification ⇒ Generalization ⇒ Power

(outline of chapter)

3.1 The integers mod m

In the previous chapter, we discussed what it means to work in different rings, like the
integers Z, the rationals Q, or the real numbers R (Section 2.1). (Again, for now, we think
of a ring as an arena in which we do battle, i.e., solve problems.) However, all of those rings
are pretty much systems of numbers as you knew them in K–12, just given a fancier name.

37

38 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

In contrast, we now come to a system of numbers that you probably didn’t see in K–12,
though you may well have seen them elsewhere: The integers (mod m).

So exactly how do we define a brand new system of numbers? In other words, how do
we define a new ring to work in?

How to define a ring
To define a ring R:

� Choose a set: First, choose a set R of objects that will be the “numbers” of
your ring.

� Define addition: Next, define how to add two elements of R. Note that when
you define a ring, you’re free to define a + b however you please; you don’t
necessarily have to choose a definition of a + b that resembles or is somehow
related to ordinary addition of numbers (though that’s what happens with
most rings).

� Define multiplication: Finally, define how to multiply two elements of R.
Again, your definition of multiplication need not be related to ordinary mul-
tiplication.

As we’ll see in Chapter 4, for a given set R and a definition of addition and multiplication
to form a ring, we also need to know that certain algebraic axioms hold. However, in this
chapter, we’ll only be looking at one example of a ring and we won’t need the general theory,
so we’ll put off discussing those axioms until we actually look at rings in general.

Returning to Z/(m), one good place to start thinking about Z/(m) is with the following
question.

Ask Yourself 3.1.1. Suppose we start with the ring of integers Z and impose the re-
quirement that 13 = 0. (For the moment, ignore the question of whether you can do that
consistently.) If you do that, what other numbers are required to be equal to 7?

For example, if 13 = 0, then it must be the case that 20 = 7 + 13 = 7, and similarly,
7 must also be equal to 33, 46, 59, Going in the other direction, 7 = 7 − 13 = −6, and
similarly, 7 must also be equal to −19,−32,−45, Putting those two chains of reasoning
together, we see that if 13 = 0, then

· · · = −45 = −32 = −19 = −6 = 7 = 20 = 33 = 46 = 59 = (3.1.1)

Note that one thing that the numbers 20, 33, 46, 59, . . . all have in common is that when you
divide each of them by 13, we get a remainder of 7 (try it!), and the same fact holds true for
−19 = −32 = −45 = . . . , though the signs are more confusing. But there’s nothing special

3.1. THE INTEGERS MOD m 39

about 7; the fact is that if we set 13 = 0, then each integer is classified by its remainder
upon division by 13, and so every integer is equal to one of the numbers 0, . . . , 12.

That basic idea is why we turn next to the following definition.

Definition 3.1.2. Let m be a positive integer. For any integer k, k reduced (mod m) is the
remainder you get when you divide k by m. In other words, if, for some q, r ∈ Z,

k = qm+ r with 0 ≤ r < m, (3.1.2)

then k reduced (mod m) is equal to r.

Note that the uniqueness part of the Division Theorem 2.3.1 is what makes Defini-
tion 3.1.2 unambigous. In any case, if we want to declare that m = 0, then (3.1.2) means
that every number k is equal to its remainder when you divide by m, which is why in the
following defintion, Z/(m) only contains the numbers 0, . . . ,m− 1.

Definition 3.1.3. Let m be a positive integer. We define the ring Z/(m), or the integers
(mod m), as follows.

� The underlying set of Z/(m) is {0, . . . ,m− 1}.

� For a, b ∈ Z/(m), we define a+ b to be the ordinary integer sum of a and b, reduced
mod m.

� Similarly, for a, b ∈ Z/(m), we define the product ab to be the ordinary integer product
of a and b, reduced mod m.

When we work in Z/(m), we refer to m as the modulus of our ring.

Definition 3.1.3 gives an unambigous definition of the algebraic object we need. However,
it will be very helpful, and even conceptually useful, to have more flexibility in how we can
write down the elements of Z/(m), so we introduce the following idea.

Definition 3.1.4. Let m be a positive integer. To say that two integers a and b are
congruent (mod m), or equivalently, that a is equal to b (mod m), means that b − a is
divisible by m. Put another way, a is equal to b (mod m) exactly when

a = qm+ b (3.1.3)

for some integer q.

So, for example, the reduction of k (modm) (Definition 3.1.2) is congruent to k (modm).
More generally, we have the following Congruent Substitution Principle.

Congruent Substitution Principle: If we are working in the ring Z/(m), we can
always replace any integer a with any integer b congruent to a (mod m). In fact,
we think of a and b as two different names for the same element of Z/(m).

40 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

Even more generally, to expand on our original goal, we have that:

The m = 0 Principle: Arithmetic in Z/(m) is like regular arithmetic, except that
we declare that m = 0, and accept all of the relations that follow as a consequence
(such as the Congruent Substitution Principle).

Here are some examples of consequences of the Congruent Substitution Principle (or the
m = 0 Principle).

Example 3.1.5. In Z/(11), 3+8 = 0, so we can think of 8 as being equal to −3 in Z/(11).
Note that (−3)2 = 9, which is consistent with 82 = 64 reducing to 9 (mod 11), since
64 = 5(11)+9. More generally, if m is odd, and we’re working on something multiplicative,
it can be helpful to list the elemnts of Z/(m) using negatives. For example, the elements
of Z/(11) can be written as:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} = {0, 1, 2, 3, 4, 5,−5,−4,−3,−2,−1}
= {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} .

(3.1.4)

Example 3.1.6. Confession: While it’s useful and important for you to understand Z/(m)
for any m, in this book, the examples of Z/(m) we will use most often are Z/(2) and Z/(3)
(and really, Z/(2) far more than any other Z/(m)). For Z/(2), the elements are {0, 1}, and
addition and multiplication are:

+ 0 1

0 0 1

1 1 0

∗ 0 1

0 0 0

1 0 1

(3.1.5)

Note also that +1 = −1 in Z/(2), or in other words, it’s impossible to make sign errors
mod 2.

For Z/(3), instead of the more commonly used {0, 1, 2}, I often personally prefer to use
the names {0, 1,−1}. In those terms, addition and multiplication become:

+ 0 1 −1

0 0 1 −1

1 1 −1 0

−1 −1 0 1

∗ 0 1 −1

0 0 0 0

1 0 1 −1

−1 0 −1 1

(3.1.6)

Example 3.1.7. In Z/(13), 2(7) = 1, so we can think of 7 as being equal to
1

2
in Z/(13).

Note that this substitution is consistent with the arithmetic of fractions. For example, still
working in Z/(13), we have:

1

8
=

(
1

2

)3

= 73 = 343 = 5, (3.1.7)

which is indeed consistent with 8(5) = 40 = 1.

3.1. THE INTEGERS MOD m 41

I also confess that one reason for the above manipulations is that I want you to wonder:

Ask Yourself 3.1.8. On the one hand, will the Congruence Substitution Principle, or more
generally, the m = 0 Principle, always work consistently in Z/(m), instead of resulting in
some kind of contradiction like 0 = 1? On the other hand, if we just stick with the more
clearly consistent operations of Definition 3.1.3, can we still rely on ordinary properties of
arithmetic like the associativity of multiplication, i.e., (ab)c = a(bc)?

Fear not, the answer to both questions in Ask Yourself 3.1.8 is yes. However, we’ll need
several more layers of abstraction to explain that fact efficiently, so we’ll wait to do that
until Chapter 7. Until then, several problems below give you a chance to play around in
the ring Z/(p) (p a prime) with two interesting ideas. First, we have the idea of a primitive
element.

Definition 3.1.9. Let p be an odd prime. To say that a ∈ Z/(p), a ̸= 0, is a primitive
element of Z/(p), or a primitive element (mod p), means that if we compute the powers a,
a2, a3, etc., we eventually encounter every nonzero element 1, . . . , p− 1 of Z/(p).

Example 3.1.10. Consider the ring Z/(7) (i.e., take p = 7). On the one hand, if we
compute powers of 3 in Z/(7), we get:

31 = 3 32 = 9 = 2 33 = 3(2) = 6

34 = 3(6) = 18 = 4 35 = 3(4) = 12 = 5 36 = 3(5) = 15 = 1.
(3.1.8)

We see that each of the numbers 1, . . . , 6 is a power of 3, so 3 is a primitive element of
Z/(7). Important computational note: As we compute the powers of 3 (mod 7), we reduce
the final answer mod 7 each time, and then multiply that reduced answer by 3 to get the
next power of 3 (mod 7). That practice produces a mild savings of effort in this case, but is
critical when, say, we compute the powers of 7919 mod 8675309 or the powers of a 150-digit
prime number mod a 300-digit prime number.

Getting back to primitivity, in contrast, if we compute powers of 2 in Z/(7), we get:

21 = 2 22 = 4 23 = 8 = 1

24 = 2(1) = 2 25 = 2(2) = 4 26 = 2(4) = 8 = 1,
(3.1.9)

and so on. We see that if we keep cycling through all powers of 2, we’ll only ever get 2, 4,
and 1 as answers, so 2 is not primitive (mod 7).

Believe it or not, using only the terms we’ve defined in this section, we can now state a
question to which, as of this writing in 2020, no one on earth knows the answer.

Unsolved Problem 3.1.11. Is 2 primitive mod p for infinitely many primes p?

Incredibly, there is actually a concrete conjectured answer for how often 2 is primitive
mod p: Artin’s conjecture posits, for example, that 2 is primitive mod p for roughly 37.4%
of all primes p, or more generally, that the same holds replacing 2 with any other prime not

42 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

equal to 1 mod 4. For more on Artin’s conjecture, see (??); see Problems 3.1.3 and 3.1.3
for some experiments along these lines.

Another interesting idea you’re now ready to experiment with is the idea of a quadratic
residue.

Definition 3.1.12. Let p be an odd prime. To say that a ∈ Z/(p), a ̸= 0, is a quadratic
residue (mod p) means that a is a square (mod p), or in other words, the equation x2 = a
has a solution x ∈ Z/(p). Nonzero elements of Z/(p) that are not quadratic residues are
called (quadratic) nonresidues (mod p). (Note that by definition, 0 is neither a quadratic
residue nor a nonresidue.)

It turns out that the percentage of numbers mod p that are quadratic residues is quite
predictable (see Problem 3.1.6), but the order in which residues and nonresidues occur as
we go from 1 to p− 1 seems to behave quite randomly. As a result, quadratic residues have
a surprising application, in that they can be used to create reproducible psuedorandom
number generators; see (??).

Problems

3.1.1. Let m be a positive integer, and let k be an arbitrary integer. Prove that k is
congruent (mod m) to exactly one integer r between 0 and n − 1. (Suggestion: Division
Theorem.)

3.1.2. You may remember from high school algebra that a quadratic equation has at most
two solutions. This problem explores the fact that this is not generally the case in Z/(m).
(Note that solutions that are the same (mod m) are considered to be the same solution; for
example, in Z/(2), x2 = 1 has exactly one solution, namely, x = 1 = 3 = 5 = 7 =)

(a) By trial and error, find a positive integer m such that the equation x2 = 1 has more
than two solutions in Z/(m).

(b) Can you find a Z/(m) where x2 = 1 has 8 solutions? 16?

3.1.3. Is 2 primitive mod 11? Mod 13, 17, 19, 23, 29? (Remember to reduce mod p each
time you compute a new power of 2; see Example 3.1.10.)

3.1.4. Is 3 primitive mod 11? Mod 13, 17, 19, 23, 29? (Remember to reduce mod p each
time you compute a new power of 3; see Example 3.1.10.)

3.1.5. For p = 7, 11, 13, 17, 19, 23, list all quadratic residues mod p (Definition 3.1.12).
(Suggestion: Square everything mod p.)

3.1.6. This problem relies on Problem 3.1.5.

(a) How many residues are there mod 7? Mod 11? Mod 13, 17, 19, 23? Look for a pattern
in the data from Problem 3.1.5.

3.2. MODULAR LINEAR EQUATIONS AND FIELDS 43

(b) Proving the pattern you discovered always holds is not easy, but partial progress is
a more tractable problem: For p an odd prime, prove that no more than half of the
nonzero elements of Z/(p) are residues. (Suggestion: Look for patterns in your work
from Problem 3.1.5; see also Example 3.1.5.)

3.1.7. Use your data from Problem 3.1.5 to separate the odd primes p (including 3 and 5)
into two catgories: Yes (−1 is a QR mod p) and No (−1 isn’t a QR mod p). Do you see
any patterns in the values of Yes/No primes mod 4? Mod 6? Mod 8? Mod 12?

3.1.8. Use your data from Problem 3.1.5 to separate the odd primes p (including 3 and 5)
into two catgories: Yes (2 is a QR mod p) and No (2 isn’t a QR mod p). Do you see any
patterns in the values of Yes/No primes mod 4? Mod 6? Mod 8? Mod 12?

3.1.9. For each a such that 1 ≤ a ≤ 6, find the smallest integer n > 0 such that an = 1 in
Z/(7). Do you see any patterns relating to the number 7?

3.1.10. For each a such that 1 ≤ a ≤ 10, find the smallest integer n > 0 such that an = 1
in Z/(11). Do you see any patterns relating to the number 11?

3.1.11. For each a such that 1 ≤ a ≤ 12, find the smallest integer n > 0 such that an = 1
in Z/(13). Do you see any patterns relating to the number 13?

3.1.12. For this problem, you will need a list of all prime numbers up to 200, which
shouldn’t be hard to find online or in some other reference.

(a) Reduce each of those prime numbers (mod 6). What patterns do you see?

(b) Reduce each of those prime numbers (mod 9). What patterns do you see?

(c) Reduce each of those prime numbers (mod 10). What patterns do you see?

(d) What do you think will happen in general, if you look at the distribution of prime
numbers (mod m)? Make a conjecture.

3.2 Modular linear equations and fields

The following question is interesting for both theoretical and practical (money-making)
reasons.

Question 3.2.1. For which a, b ∈ Z/(m) can we solve the equation ax = b in Z/(m) (i.e.,
for some x ∈ Z/(m))?

Fortunately, the Congruent Substitution Principle allows us to reduce Question 3.2.1 to
the material in Section 2.5, since:

ax = b in Z/(m)

⇔ ax = qm+ b in Z, for some q ∈ Z

⇔ ax+my = b in Z, for some y ∈ Z,

(3.2.1)

44 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

where the second ⇔ comes from taking y = −q.
Therefore, in Z/(m), Bezout’s Identity 2.5.1 and Corollary 2.5.4 become:

Corollary 3.2.2. For a, b ∈ Z/(m), ax = b has a solution x ∈ Z/(m) exactly when
gcd(a,m) divides b (in Z). Furthermore, Euclidean Rewriting gives an explicit algorithm
for solving ax = b.

Example 3.2.3. To give a concrete example of what Corollary 3.2.2 implies, we find one
solution to the equation 50x = 2 in Z/(68). The point of (3.2.1) is that solving 50x = 2 in
Z/(68) is equivalent to solving

50x+ 68y = 2 (3.2.2)

in Z, and then ignoring y.
To solve (3.2.2), we first apply the Euclidean Algorithm to find gcd(m, a), where m = 68

(the modulus) and a = 50:
68 = 1(50) + 18

50 = 2(18) + 14

18 = 1(14) + 4

14 = 3(4) + 2

4 = 2(2).

(3.2.3)

Applying Euclidean Reduction (Algorithm 2.5.2) with 68 = m, 50 = a, we get

18 = 68− 1(50) = m− a

14 = 50− 2(18) = a− 2(m− a) = 3a− 2m

4 = 18− 1(14) = (m− a)− (3a− 2m) = 3m− 4a

2 = 14− 3(4) = (3a− 2m)− 3(3m− 4a) = 15a− 11m.

(3.2.4)

Therefore, (−11)(68) + 15(50) = 2, which mean that 15(50) = 2 in Z/(68) — remember, in
Z/(68), 68 = 0. In fact, we can cut down on the bookkeeping involved here by using the
fact that m = 0 at each step along the way to throw out all of the occurences of m:

18 = 68− 1(50) = −a (mod 68)

14 = 50− 2(18) = a− 2(−a) = 3a (mod 68)

4 = 18− 1(14) = (−a)− (3a) = −4a (mod 68)

2 = 14− 3(4) = (3a)− 3(−4a) = 15a (mod 68).

(3.2.5)

Less writing, and if you practice, more reliable.
(By the way, if you’re curious, the reason we keep saying “one solution” is that there’s

another solution, namely, x = 49 = −19, as you can check. See Problem 3.2.2 for more
about multiple solutions.)

As a special case of Corollary 3.2.2, we have:

Corollary 3.2.4. If p is prime, and a ̸= 0 in Z/(p) (i.e., a is not congruent to 0 (mod p)),
then ax = 1 for some x ∈ Z/(p).

3.2. MODULAR LINEAR EQUATIONS AND FIELDS 45

More generally, we have:

Corollary 3.2.5. Let m be a positive integer, and let a ∈ Z/(m). We have that ax = 1 for
some x ∈ Z/(m) if and only if gcd(a,m) = 1.

Corallary 3.2.4 is more important than it might appear to be at the moment, because
that result means that Z/(p) with p prime is a kind of ring that will be more useful to us
than Z/(m) is for m not prime. This calls, of course, for some definitions.

Definition 3.2.6. Let R be a ring. (Again, we haven’t really defined ring yet, but think
R = Z, Q, R, C, or Z/(m).) For a ∈ R, a multiplicative inverse of a, or if the context is
clear, simply an inverse of a, is some b ∈ R such that ab = 1. Since an element can have
only one inverse (Problem 3.2.3), we use a−1 to denote the inverse of a.

To say that a is a unit in R means that a has a multiplicative inverse in R.

Note that the definitions of inverse and unit in a ring R depend highly on the requirement
that inverses also be contained in R. For example, 2 is not a unit of the ring of integers Z
because 1

2 is not an integer; but 2 is a unit of the ring of rational numbers.

Definition 3.2.7. A field is a ring R in which every nonzero element is a unit (and 1 ̸= 0).
In other words, to say that a nonzero ring R is a field means that for every a ̸= 0 in R,
there exists some b ∈ R such that ab = 1.

Familiar rings that also happen to be fields include the rationals Q, the reals R, and the
complex numbers C. Crucially, we also have the following interpretation of Corollary 3.2.4
when m is prime.

Corollary 3.2.8. The ring Z/(p) is a field.

To spell it out a bit more, Corollary 3.2.4 says that when p is prime and a ̸= 0 in Z/(p),
we can always use Euclidean reduction to solve the equation ax = 1 in Z/(p). We indicate
the importance of the fact that Z/(p) is a field by calling it by the following alternate names.

Definition 3.2.9. We use Fp to refer to Z/(p), or the field of order p. (The uniqueness
implied by the “the” here will be justified later.) This field is also sometimes known as the
Galois field of order p, or GF (p) for short. Alas, as we’ll see, the term order is overused in
algebra, but here order refers to the fact that there are p elements in Z/(p).

We close this section by introducing some notation for inverses that will be useful when
we work with fields.

Definition 3.2.10. Let R be a ring, let b be a unit of R, and let a be an element of R. We

define the fraction
a

b
to be ab−1.

For now, we can think of fractions as convenient abbreviations, giving a partial retroac-
tive justification for the fractions appearing in Example 3.1.7. We will later show that, as
defined, fractions have the same basic properties in general as fractions in the real numbers
have; see Section 4.2.

46 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

Problems

3.2.1. Use the Euclidean Algorithm either to find one solution for the following linear
equations in Z/(m), for the indicated m, or to show that no solution exists.

(a) Solve 12x = 7 in Z/(35).

(b) Solve 24x = 7 in Z/(81).

(c) Solve 77x = 5 in Z/(85).

(d) Solve 77x = 5 in Z/(110).

(e) Solve 314x = 5 in Z/(451).

(f) Solve 226x = 12 in Z/(538).

3.2.2. Suppose m is a fixed positive integer, a and b are nonzero elements of Z/(m), and

x is a solution to ax = b in Z/(m). Let d =
n

gcd(a, n)
. Prove that for any integer k, x+ kd

is also a solution to ax = b in Z/(m). (Conversely, one can prove that this is the complete
list of solutions to ax = b in Z/(m).)

3.2.3. Let R be a ring, let a be a nonzero element of R, and suppose that b and c are each
inverses of a. Prove that b = c. You may assume that multiplication is commutative in R.

3.2.4. Use the Euclidean Algorithm to find the inverse of each of the following elements of
Fp for the indicated primes p.

(a) Find the inverse of 9 in F19.

(b) Find the inverse of 27 in F31.

(c) Find the inverse of 34 in F71.

(d) Find the inverse of 17 in F101.

(e) Find the inverse of 118 in F257.

3.2.5. For each of the following rings Z/(m):

� Make a list of the set U(m) of all units in Z/(m). (See Corollary 3.2.5.)

� Make a “multiplication table” for U(m). That is, make a table whose rows and columns
are labelled with the elements of U(m), and in the entry corresponding to the row
labelled a and the column labelled b, write in the element ab (reduced mod m).

(a) Z/(20).

(b) Z/(24).

(c) Z/(7).

(d) Z/(11).

(e) Z/(15).

3.3. POLYNOMIALS WITH COEFFICIENTS IN A RING 47

(f) Z/(18).

3.2.6. Let R be a ring, and let a and b be units in R. Prove that ab is also a unit.

(Suggestion: Think
1

ab
.)

3.3 Polynomials with coefficients in a ring

Now, we pull a move that is entirely characteristic of how algebra (and really, theoretical
math in general) works: We describe how to take one piece of abstract nonsense and build
a new piece of abstract nonsense. To be specific, we now describe how to take an arbitrary
ring R (think R = Z, Q, R, C, Z/(m)) and create a new ring R[x]. Most of the time we
are interested in the case where R is a field (R = Q, R, C, Z/(p) = Fp), but it’s mildly
useful to describe the general case, and takes no extra effort.

Before we get to the formal definition of polynomials, however, we need to get one thing
straight.

Polynomials are not (just) functions — they are abstract objects that are elements
of a ring. In fact, we will most often use polynomials as if they were numbers in
some very strange system of numbers.

So with that out of the way:

Definition 3.3.1. Let R be a ring. (Again, we haven’t defined what a ring is yet, but
it’s enough to think of R as being one of the examples Z, Q, R, C, Z/(m) that we have
discussed so far.) We define the ring R[x], the ring of polynomials with coefficients in R, as
follows.

� The underlying set for R[x] is the set of all expressions of the form

n∑
i=1

aix
i = anx

n + an−1x
n−1 + · · ·+ a2x

2 + a1x+ a0, (3.3.1)

where each ai is an element of the ring R. An expression of the form (3.3.1) is called
a polynomial with coefficients in R. Note that we can “pad out” a polynomial like
3.3.1 by adding more terms of the form 0xk for k > n, and we declare that this does
not change the value of the polynomial. More generally, we declare that adding or
removing any finite number of such zero terms does not change the value of a poly-
nomial, but otherwise, two polynomials are equal exactly when their corresponding
coefficients in each degree are equal. Similarly, we define the zero polynomial to be
the polynomial whose coefficients (written out explicitly or not) are all zero.

48 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

� Briefly, addition and multiplication of polynomials with coefficients in R are each
defined to work like addition and multiplication of polynomials with real coefficients,
except that all coefficient arithmetic is performed in the ring R. That is, we define
the sum of two polynomials by:

anx
n + · · · + a1x+ a0

+ bnx
n + · · · + b1x+ b0

(an + bn)x
n + · · · + (a1 + b1)x+ (a0 + b0)

(3.3.2)

where all additions use the addition operation from R.

Similarly, we define the product of two polynomials by:

anx
n + · · · + a2x

2 + a1x+ a0
bkx

k + · · · + b2x
2 + b1x+ b0

anb0x
n + · · · + a2b0x

2 + a1b0x+ a0b0
anb1x

n+1 + · · · + a2b1x
3 + a1b1x

2 + a0b1x
anb2x

n+2 + · · · + a2b2x
4 + a1b2x

3 + a0b2x
2

. .
.

. .
.

. .
.

. .
.

. .
.

anbkx
n+k + · · · + c2x

2 + c1x+ c0

where the coefficients c0, c1, c2, . . . of the product are defined by

c0 = a0b0

c1 = a1b0 + a0b1

c2 = a2b0 + a1b1 + a2b0

...

cm =
∑

i+j=m

aibj = amb0 + · · ·+ a0bm

...

cn+k = anbk

(3.3.3)

and again, all coefficient operations are done in the ring R.

When we work in the ring R[x], we call R the coefficient ring of R[x]. In those terms, the
above just says that polynomials in R[x] work exactly the same as the polynomials you’ve
seen since high school, except that all of the coefficient arithmetic is done in the coefficient
ring R instead of in the real numbers.

Convention 3.3.2. When working with polynomials with coefficients in Z/(m), we write
each coefficient as one of 0, . . . ,m − 1. For example, when m = 2, we only use the coef-
ficients 0 and 1. Exception: For coefficients in Z/(3), we use the coefficients −1, 0, 1; see
Example 3.1.6.

3.3. POLYNOMIALS WITH COEFFICIENTS IN A RING 49

Remark 3.3.3. As we saw in several places in Section 3.1, the names 0, . . . ,m− 1 are not
always the best ones to use for elements of Z/(m). However, we’ll stick with Convention 3.3.2
for two reasons:

1. If m is very large, as sometimes happens in practice, you would want to declare a
standard fixed set of names when programming arithmetic in Z/(m).

2. More immediately, using Convention 3.3.2 will force you to reduce mod m constantly,
which will help you get a feel for the idea.

Example 3.3.4. To help you start to learn to multiply polynomials with coefficients in a
ring other than ordinary real numbers or complex numbers, consider p(x) = 5x3 + 10x2 +
2x + 7 and q(x) = 4x2 + 3x + 11 in the ring F13[x] of polynmials with coefficients in
F13 = Z/(13). We calculate the product p(x)q(x) as follows.

5x3 +10x2 +2x+ 7
4x2 +3x+11

3x3 + 6x2 +9x+12
2x4 +4x3 + 6x2 +8x

7x5 + x4 +8x3 + 2x2

7x5 +3x4 +2x3 + x2 +4x+12

(3.3.4)

Note that we reduce each coefficient (mod 13) at each stage. Mini-exercise: Check for
yourself that this calculation is done correctly.

In the rest of this section, we consider some concepts related to the degree of a polyno-
mial. We begin, as usual, with some definitions.

Definition 3.3.5. Let f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0, and assume that f(x) is not
0 (i.e., not every coefficient of f(x) is equal to 0). The degree of f(x), or deg f(x), is defined
to be the largest k such that ak ̸= 0. (Note that if an = 0, then deg f(x) will be strictly
less than n; see the discussion about “padding out” a polynomial in Definition 3.3.1.) If
deg f(x) = k, then ak is called the leading coefficient of f(x), and akx

k is called the leading
term of f(x). To say that a polynomial f(x) is monic means that the leading coefficient of
f(x) is 1.

We also define the degree of the zero polynomial to be deg 0 = −∞, a choice that will
make more sense momentarily.

Our next goal is to prove that the degree of the product p(x)q(x) is the sum of the
degrees of p(x) and q(x), as you may remember from high school algebra (Theorem 3.3.8).
This statement is not hard to prove, except for the slight hitch that it isn’t true, as the
following example shows.

Example 3.3.6. In the ring (Z/(6))[x], we have

(2x5)(3x7) = 6x12 = 0x12 = 0, (3.3.5)

so we have polynomials of degree 5 and 7 whose product has degree −∞. Note that
6x12 = 0x12 because 6 = 0 in the coefficient ring Z/(6).

50 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

Therefore, to make Theorem 3.3.8 actually work, we need to make an additional as-
sumption about the coefficient ring R.

Definition 3.3.7. To say that a ring R has the zero factor property means that if a, b ∈ R
and ab = 0, then either a = 0 or b = 0. Equivalently, having the zero factor property means
that the product of two nonzero elements of R is still nonzero.

For example, all of the familiar rings Z, Q, R, and C have the zero factor property; in
fact, we will show later that every field has the zero factor property (Theorem 4.2.12). As for
our other favorite example Z/(m), if m is not prime (i.e., m = ab for integers a, b > 1), then
Z/(m) does not have the zero property (Problem 3.3.2); and if p is prime, then Fp = Z/(p)
is a field (Corollary 3.2.4) and therefore has the zero factor property.

Theorem 3.3.8. Suppose R is a ring with the Zero Factor Property and f(x), g(x) ∈ R[x].
Then

deg(f(x)g(x)) = deg(f(x)) + deg(g(x)), (3.3.6)

where the sum in (3.3.6) is defined for −∞ by declaring that −∞ plus anything is −∞.

Proof. If either f(x) = 0 or g(x) = 0, then under the above interpretation, (3.3.6) becomes
−∞ = −∞, so we may assume that f(x) and g(x) are both nonzero. In that case, let
anx

n and bkx
k be the leading terms of f(x) and g(x), respectively. Then by the defini-

tion of polynomial multiplication (Definition 3.3.1), the leading term of f(x)g(x) will be
anbkx

n+k, since anbk ̸= 0 (by the zero factor property in the coefficient ring R). Therefore,
deg(f(x)g(x)) = n+ k = deg(f(x)) + deg(g(x)), and the theorem follows.

Theorem 3.3.8 has a number of useful consequences, such as the following corollaries,
whose proofs are left to you.

Corollary 3.3.9. Let R be a ring with the zero factor property, and suppose f(x), g(x), h(x)
are polynomials in R[x] such that f(x) = g(x)h(x). Then one of g(x) and h(x) must have

degree at most
deg(f(x))

2
.

Proof. Problem 3.3.3.

Corollary 3.3.10. Let R be a ring with the zero factor property, and suppose u(x) is a unit
(Definition 3.2.6) in R[x]. Then u(x) must be a nonzero constant polynomial u = u(x), and
in fact, u is actually a unit in R.

Proof. Problem 3.3.4.

Problems

3.3.1. Calculate the following polynomial products in the indicated polynomial rings. (Re-
member, to say that a calculation takes place in the ring R[x] means that the coefficient
calculations take place in the ring R.) Put your final answer in a form where all coefficients
are as small as possible (either smallest positive or smallest absolute value, up to you), and

3.3. POLYNOMIALS WITH COEFFICIENTS IN A RING 51

also make sure that each of the coefficients that appears in the intermediate steps of your
work is similarly reduced. (I.e., reduce coefficients mod p as you go along, instead of only
reducing at the end.)

(a) (9x3 + 10x2 + 3x+ 12)(2x2 + 14x+ 3) in F19[x].

(b) (9x3 + 10x2 + 3x+ 10)(2x2 + 12x+ 3) in F17[x].

(c) (5x3 + 2x2 + x+ 1)(3x3 + 2x+ 4) in F7[x].

(d) (4x3 + 2x2 + x+ 1)(3x3 + 2x+ 4) in F5[x].

(e) (2x4 + 3x3 + x2 + x+ 1)(x2 + 2x+ 1) in F3[x].

(f) (x7 + x5 + x4 + x3 + x+ 1)(x4 + x3 + x2 + 1) in F2[x].

(g) (x9 + x6 + x5 + x3 + x2 + x+ 1)(x5 + x4 + 1) in F2[x].

3.3.2. This problem considers the zero factor property (Definition 3.3.7).

(a) Prove (by giving an example) that Z/(6) does not have the zero factor property.

(b) Prove that if m is composite (i.e., m = ab for some integers a, b > 1), then Z/(m) does
not have the zero factor property.

3.3.3. (Proves Corollary 3.3.9) Let R be a ring with the zero factor property, and suppose
f(x), g(x), h(x) are polynomials in R[x] such that f(x) = g(x)h(x). By symmetry, we
may assume deg(g(x)) ≤ deg(h(x)) (else swap g(x) and h(x)). Prove that deg(g(x)) ≤
1
2 deg(f(x)).

3.3.4. (Proves Corollary 3.3.10) Let R be a ring with the zero factor property, and suppose
u(x)v(x) = 1 in R[x] (i.e., u(x) and v(x) are units in R[x]).

(a) Prove that deg u(x) = deg v(x) = 0. Why does that mean that u(x) and v(x) are
actually constant polynomials, and therefore, elements of R?

(b) Prove that u(x) and v(x) must actually be units in R.

3.3.5. The goal of this problem is to count polynomials of given types in Fp[x].

(a) How many polynomials of degree ≤ 4 are there in Fp[x]? Describe how you would list
all of them.

(b) How many monic polynomials of degree 5 (exactly) are there in Fp[x]? Describe how
you would list all of them.

(c) How many monic polynomials of degree 6 (exactly), with nonzero constant terms, are
there in Fp[x]? Describe how you would list all of them.

52 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

3.4 Polynomial division with remainder

The first building block of the Euclidean Algorithm for computing gcd(a, b) is a careful con-
sideration of something you’ve known since grade school, namely, division with remainder.
So let’s start by reviewing division with remainder; specifically, let’s see what happens when
we divide 68931 (the dividend) by 212 (the divisor), with remainder.

3 2 5
212 6 8 9 3 1

6 3 6 0 0
5 3 3 1
4 2 4 0
1 0 9 1
1 0 6 0

3 1

(3.4.1)

Well OK, you knew how to do that already, but the point is, I want you think about
why you take the steps you do you in (3.4.1).

Ask Yourself 3.4.1. In (3.4.1), why do you pick 3, 2, and 5 as the appropriate multiples of
212? That is, what general rule tells you how to pick the digits in the quotient? Similarly,
what general rule tells us that we stop when we get 31?

After some thought, you might remember that the digits of the quotient are chosen to
wipe out as much of the biggest digit of what’s left of the dividend (“212 goes into 689 3
times,” etc.), and we stop because the remainder 31 is strictly less than the divisor 212.

Moving forward in your mathematical history, you may recall that an analogous process
works for polynomials with real coefficients. For example, here’s how to divide the dividend
6x4 + 8x3 + 9x2 + 3x+ 1 by the divisor 2x2 + x+ 2 in the ring R[x] (i.e., the ring used in
high school Algebra II).

3x2 + 5
2x+ 1

4

2x2 + x+ 2 6x4 +8x3 + 9x2 + 3x+ 1

6x4 +3x3 + 6x2

5x3 + 3x2 + 3x+ 1

5x3 + 5
2x

2 + 5x
1
2x

2 − 2x+ 1
1
2x

2 + 1
4x+ 1

2

− 9
4x+ 1

2

(3.4.2)

Again, try to explain why you do what you do there.

Ask Yourself 3.4.2. In (3.4.1), why do you pick 3x2, 5
2x, and 1

4 as the appropriate
multiples of 2x2 + x+ 2? That is, what general rule tells you how to pick the terms in the
quotient? Similarly, what general rule tells us that we stop when we get −9

4x+ 1
2?

3.4. POLYNOMIAL DIVISION WITH REMAINDER 53

Ask Yourself 3.4.2 (and you really did ask yourself that question, right?) deserves an
answer at length, along with some other observations.

� The first observation is that long division of polynomials is actually simpler than long
division of integers in one important sense: The different “places” (the x4 place, the
x3 place, etc.) never interact, in that there is no borrowing or carrying. For example,
you never get a situation like the one in the last step of (3.4.1), where you have to
multiply by 5 to wipe out the 1 (which we now think of as the “digit” 10) left over
from a previous step.

� On the down side, the “digits” in each step are now arbitrary real coefficients, so
there are negative signs, which are mildly annoying, and denominators, which are
deadly. That is, the denominators make it very difficult to do long division with 100%
accuracy, whether you’re computing by hand, where small errors in denominators
can produce disastrous eventual effects; or by machine, where you either have round-
off error and its attendant problems, or you have to use arbitrary-precision rational
numbers, which are difficult to manage and store.

� The first main observation is, however, that we pick each term in the quotient in order
to wipe out the leading term remaining in the dividend. For example, in (3.4.2), we

choose 3x2 in the quotient because
6x4

2x2
= 3x2, we choose 5

2x because
5x3

2x2
= 5

2x, and

we choose 1
4 because

1
2x

2

2x2
= 1

4 .

� The other main observation is that we stop with the remainder −9
4x+ 1

2 because it’s
at that point that we get the remainder to have a strictly smaller degree than the
degree of the divisor.

In fact, those final two observations (wipe out the biggest term remaining, stop when the
degree of the reminder is smaller than the degree of the divisor) form the heart of the main
point of this section, the Division Theorem for polynomials (Theorem 3.4.4). Before we
get to that result, however, let’s consider one more example: We again divide the dividend
6x4 + 8x3 + 9x2 + 3x+ 1 by the divisor 2x2 + x+ 2, but this time in the ring F13[x] (i.e.,
polynomials with coefficents that are integers mod 13).

3x2 + 9x+10

2x2 + x+ 2 6x4 +8x3 +9x2 + 3x+ 1

6x4 +3x3 +6x2

5x3 +3x2 + 3x+ 1

5x3 +9x2 + 5x

7x2 +11x+ 1

7x2 +10x+ 7

x+ 7

(3.4.3)

54 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

Note that in (3.4.3), the remainder rule works as before (stop when the degree of the
remainder is less than the degree of the divisor). Furthermore, it does seem that at each
stage, we somehow manage to wipe out the leading term remaining in the dividend. But if
you’re honest, you should really be asking yourself the following.

Ask Yourself 3.4.3. In (3.4.3), how did we know that the 9x and 10 in the quotient would
wipe out first the 5x3 and then the 7x2 in the dividend at the appropriate stages of the
calculation? Also, check that the subtractions at each stage are actually correct. Where
and how do we use the Congruent Substitution Principle?

The answer to Ask Yourself 3.4.3 is that mod 13 (since we are working in F13[x]), the
calculation in (3.4.3) is actually exactly the same as the calculation in (3.4.2). However, in
the coefficient ring F13, we can represent all of the fractions and negative numbers appearing
in (3.4.2) as nonnegative integers (following Convention 3.3.2)! For example, in the second
step of (3.4.2), we obtained the term 5

2x in the quotient. In the modular equivalent (3.4.3),
we note that since 2(7) = 14 = 1 in F13, 7 is the (multiplicative) inverse of 2 in F13

(Definition 3.2.6), or in other words, 7 = 1
2 in F13. Therefore, 5

2 = 5(7) = 35 = 9 in F13,
and we obtain the term 9x in the quotient. You should work out for yourself how and why
1
4 = 10, −9

4 = 1, and so on.
In any case, as promised earlier, we now come to the main point of this section. (Com-

pare the integer Division Theorem 2.3.1 and Signed Division Theorem 2.3.4; the Division
Theorem for polynomials can be seen as parallel to both of those previous theorems.)

Theorem 3.4.4 (The Division Theorem for Polynomials). Let F be a field, and let a(x)
and d(x) be polynomials in F [x] with d(x) ̸= 0. There exist unique q(x), r(x) ∈ F [x] such
that

a(x) = d(x)q(x) + r(x), with deg(r(x)) < deg(d(x)). (3.4.4)

Note that the degree condition in (3.4.4) includes the possibility that r(x) = 0, and
therefore, that deg(r) = −∞.

Proof. The proof of this theorem can be thought of as either a generalization of the “tradi-
tional proof” of the Division Theorem 2.3.1 or as a formal version of the polynomial long
division procedure discussed above. (More formally, you can also turn this proof into an
inducation proof; see Problem 3.4.4.)

Tackling the existence of q(x) and r(x) first, if deg(a(x)) < deg(d(x)), then we can take
q(x) = 0 and r(x) = 0, so suppose the leading terms of a(x) and d(x) are anx

n and bkx
k,

respectively, with k ≤ n and bk ̸= 0. Because F is a field, we can form the fraction
an
bk

, let

q1(x) =

(
an
bk

xn−k

)
, and let

a1(x) = a(x)−q1(x)d(x) = (anx
n+ . . .)−

(
an
bk

xn−k

)
(bkx

k+ . . .) = an−1x
n−1+ . . . (3.4.5)

Note that since the term q1(x) is precisely chosen to cancel out the anx
n term in a(x), we

have that deg(a1(x)) ≤ n− 1. Proceeding similarly to cancel out the leading term of a1(x),

3.4. POLYNOMIAL DIVISION WITH REMAINDER 55

we obtain a2(x) of degree at most n−2, and so on, until we obtain some am(x) with degree
strictly less than k = deg(d(x)). If we then let r(x) = am(x), we see that

r(x) = a(x)− q1(x)d(x)− q2(x)d(x)− · · · − qm(x)d(x)

= a(x)− q(x)d(x),
(3.4.6)

where q(x) = q1(x) + · · ·+ qm(x). Therefore, a(x) = q(x)d(x) + r(x), as desired.

As for the uniqueness part of the theorem, the proof is analogous to the proof of the
uniqueness part of the Division Theorem 2.3.1, so we leave it to you (Problem 3.4.5).

Ask Yourself 3.4.5. Does our proof of Theorem 3.4.4 really only use the abstract definition
of field (Definition 3.2.7)? Conversely, do we actually need to assume coefficients in a field
to make the proof of Theorem 3.4.4 work? Can we instead make some kind of reasonable
assumption on d(x)?

Remark 3.4.6. For the purposes of making money (which is, did I mention, our main
purpose in this book), the most useful case of the entire discussion above is where F =
F2 = {0, 1}. In that case, some of the most complicated parts of our discussion go away

completely, since the only “fraction” you need to worry about is
1

1
= 1 — no big deal! So

to avoid getting bogged down with fractions too much, our explicitly calculational problems
will stick to the primes p = 2, 3, 5. It’s definitely worth doing some problems with coefficients
in Fp for primes other than p = 2, however, for two reasons.

� Odd primes, where 1 ̸= −1, force you to learn the correct signs that occur at various
stages of long division.

� Since you can avoid fractions entirely with F = F2 = {0, 1} and F = F3 = {0, 1,−1},
we’ll consider a few problems in F = F5, where some fractions are needed from time
to time. However, if you just remember that

1

2
= 3 = −2,

1

3
= 2,

1

4
= 4 = −1, (3.4.7)

that will cover all of your fractional needs.

We now take a bit of a theory digression to prove that a few pieces of high school algebra
carry over to polynomials with coefficients in a field F . We begin with the Remainder
Theorem and its special case the Factor Theorem.

Corollary 3.4.7 (Remainder Theorem). Let F be a field, let f(x) ∈ F [x] be a polynomial,
and let α be an element of F . When we divide f(x) by (x−α), the remainder is a constant,
namely r = f(α) (the element of F obtained by substituting α for x in f(x)).

Proof. Problem 3.4.6.

As a special case of the Remainder Theorem, we immediately see the following.

56 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

Corollary 3.4.8 (Factor Theorem). Let F be a field, f(x) ∈ F [x], and α ∈ F . Then (x−α)
divides f(x) (i.e., with a remainder of 0) exactly when f(α) = 0.

While the Factor Theorem is not too hard to prove, it’s quite useful. For example, it
implies the following very useful fact about polynomials with coefficients in a field.

Corollary 3.4.9 (Degree n has ≤ n solutions). Let F be a field and let f(x) ∈ F [x] be a
polynomial of degree n ≥ 1. Then f(x) has at most n distinct zeros in F , i.e., there are at
most n distinct elements α ∈ F such that f(α) = 0.

Corollary 3.4.9 probably doesn’t seem that interesting, until you realize that it’s not
true if you replace F with, say, Z/(m) for m not prime (Problem 3.1.2). For brevity, we
use a proof by induction, but rest assured, if you’re not familiar with induction, or even if
you’re just willing to accept the result, you can just skip the proof and move on.

Proof. For n = 1, f(x) = ax− b (a ̸= 0) has exactly one zero, namely, x =
b

a
.

Proceeding by induction, suppose we know the theorem holds for all polynomials of
degree at most n, and suppose deg(f(x)) = n+ 1. If f(x) has no zeros, then certainly the
theorem holds, so suppose f(α) = 0 for some α ∈ F . By the Factor Theorem 3.4.8, we have
that

f(x) = q(x)(x− α) (3.4.8)

for some q(x) ∈ F [x] of degree n. If f(β) = 0 for some β ∈ F , β ̸= α, then

0 = q(β)(β − α), (3.4.9)

so dividing both sides by (β−α) ̸= 0 (since F is a field), we see that β is a zero of q(x). By
induction, there are at most n possibilities for β, which means that f(x) has at most n+ 1
distinct zeros (the zeros of q(x) along with α). The corollary follows.

Problems

3.4.1. Solve the following long division with remainder problems in F2[x]. Don’t just
compute with ordinary rational numbers and reduce at the very end; instead, represent
each coefficient that appears as you go along as one of the integers {0, 1}.

(a) Divide x4 + x3 + x2 + x+ 1 by x+ 1, with remainder.

(b) Divide x5 + x3 + x2 + x+ 1 by x2 + x+ 1, with remainder.

(c) Divide x6 + x4 + x3 + x+ 1 by x2 + 1, with remainder.

(d) Divide x7 + x5 + x4 + x3 + x2 + x+ 1 by x3 + x+ 1, with remainder.

(e) Divide x8 + x6 + x5 + x4 + x3 + x2 + x+ 1 by x3 + x2 + 1, with remainder.

(f) Divide x9 + x7 + x6 + x5 + x4 + x2 + 1 by x4 + x3 + 1, with remainder.

3.4. POLYNOMIAL DIVISION WITH REMAINDER 57

3.4.2. Solve the following long division with remainder problems in F3[x]. Don’t just
compute with ordinary rational numbers and reduce at the very end; instead, represent each
coefficient that appears as you go along as one of the integers {−1, 0, 1, 2}. (Remember,
sometimes −1 is easier to work with than 2.)

(a) Divide x4 + 2x3 + x2 + x+ 2 by x− 1, with remainder.

(b) Divide x4 + x3 + 2x2 + 1 by x2 + 2x+ 2, with remainder.

(c) Divide x5 + x4 + x3 + 2x+ 2 by 2x2 + 1, with remainder.

(d) Divide x6 + 2x4 + x3 + x2 + x+ 1 by x2 − x+ 1, with remainder.

(e) Divide x7 + x6 + 2x5 + x4 + 2x2 + x+ 2 by 2x2 + x+ 2, with remainder.

(f) Divide x7 + 2x6 + x5 + x4 + 2x3 + x2 + 1 by 2x3 − x2 + 1, with remainder.

3.4.3. Solve the following long division with remainder problems in F5[x]. Don’t just
compute with ordinary rational numbers and reduce at the very end; instead, represent
each coefficient that appears as you go along as one of the integers {−2,−1, 0, 1, 2, 3, 4}.
(Remember, sometimes −1 is easier to work with than 4 and −2 is easier to work with than
3.)

(a) Divide x4 + 4x3 + x2 + 3x+ 2 by 2x− 2, with remainder.

(b) Divide x4 + 2x3 + 3x2 + 2x+ 4 by 2x2 + x− 1, with remainder.

(c) Divide 3x5 + 2x4 + 4x3 + 2x+ 1 by 3x2 + 2, with remainder.

(d) Divide 2x6 + 2x4 + x3 + 3x2 + 2x+ 1 by 3x2 − x+ 1, with remainder.

(e) Divide 3x7 + x6 + 2x5 + x4 + 2x2 + x+ 2 by 2x2 + 3x+ 1, with remainder.

(f) Divide x8+2x6+3x5+4x4+2x3+4x2+3x+2 by x3+2x2+3x+4, with remainder.

3.4.4. Turn the idea of the proof of the existence part of the Division Theorem for Poly-
nomials 3.4.4 into an induction argument.

3.4.5. (Proves Theorem 3.4.4) Let F be a field, and suppose that a(x), d(x) are polynomials
in F [x] with d(x) = 0. Suppose also that qi(x) and ri(x) (i = 1, 2) are polynomials in F [x]
such that

a(x) = q1(x)d(x) + r1(x), a(x) = q2(x)d(x) + r2(x), (3.4.10)

with deg(r1(x)),deg(r2(x)) < deg(d(x)). Prove that r1(x) = r2(x) and q1(x) = q2(x).
(Suggestion: How big can deg(r2(x)− r1(x)) be?)

3.4.6. (Proves Corollary 3.4.7) Let F be a field, let f(x) ∈ F [x] be a polynomial, and let
α be an element of F . Prove that when we divide f(x) by (x − α), the remainder is the
constant r = f(α). (Suggestion: Apply the Division Theorem for Polynomials.)

58 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

3.5 The Euclidean algorithm for polynomials

In case you haven’t guessed where this is all going, here’s the upshot:

For a field F , the ring F [x] works just like the ring of ordinary integers, except replac-
ing the Division Theorem 2.3.1 with the Division Theorem for Polynomials 3.4.4.

For a dramatic example of this principle, in this section, we’ll develop the Euclidean
algorithm for polynomials, which computes the GCD of two polynomials in, essentially, the
same way the ordinary Euclidean algorithm computes the GCD of two integers. We begin
with the fundamental definitions of divisibility (compare Definitions 2.1.4 and 2.2.1).

Definition 3.5.1. Let F be a field, and let f(x), g(x), d(x) ∈ F [x] be polynomials with
coefficients in F . To say that d(x) divides f(x) in F [x] means that f(x) = q(x)d(x) for
some q(x) ∈ F [x]. Similarly, to say that d(x) is a common divisor of f(x) and g(x) means
that d(x) divides both f(x) and g(x).

We note that divisibility has the same fundamental properties for polynomials as it does
for integers; see, for example, Problems 3.5.1 and 3.5.2.

Coming to the definition of greatest common divisor, we immediately run into a problem
we never really had to face with integers.

Definition 3.5.2. Let F be a field, and let f(x), g(x) ∈ F [x] be polynomials with coeffi-
cients in F , at least one of which is nonzero. To say that d(x) ∈ F [x] is a greatest common
divisor of f(x) and g(x) means that d(x) is a common divisor of f(x) and g(x) of highest
possible degree.

Ask Yourself 3.5.3. Can you find a field F and some f(x), g(x) ∈ F [x] such that there
is more than one greatest common divisor of f(x) and g(x)? How different can you make
them?

After a while, you might think of an example like the following: Take F = R, f(x) =
x2 + 3x+ 2, g(x) = x2 − 1. Then since

f(x) = (x+ 2)(x+ 1), g(x) = (x− 1)(x+ 1), (3.5.1)

and it turns out that nothing similar is possible with a polynomial of degree 2 or higher,
x+ 1 is a GCD of f(x) and g(x). However, since

f(x) = (2x+ 4)
(
1
2x+ 1

2

)
, g(x) = (2x− 2)

(
1
2x+ 1

2

)
, (3.5.2)

1
2x + 1

2 is also a GCD of f(x) and g(x). In fact, a similar calculation shows that (cx + c)
is a GCD of f(x) and g(x) for any constant c ̸= 0, so there’s definitely more to think
about in the way of ambiguities of the GCD than the ± factor we saw back with integers
(Section 2.2).

3.5. THE EUCLIDEAN ALGORITHM FOR POLYNOMIALS 59

Unsettling! Fortunately, the polynomial version of the Euclidean algorithm not only
gives a method for computing gcd(f(x), g(x)), it also shows that the above ambiguity
(nonzero scalar multiples) is the only one that can occur. Even better, having gone to
some effort in setting up our framework, we now reap the rewards, in that the Euclidean
Algorithm for Polynomials is not just essentially the same algorithm that we had for inte-
gers, but is also verified using the same proof and yields the same theoretical consequences.

Algorithm 3.5.4 (The Euclidean Algorithm). Let F be a field, a(x), b(x) ∈ F [x], and
deg(a(x)) ≥ deg(b(x)) ≥ 0.

1. Initialize. Let r−1(x) = a(x) and r0(x) = b(x).

2. Main loop. For i = 1, 2, . . . , apply the Division Theorem to divide ri−2(x) by ri−1(x)
with quotient qi(x) and remainder ri(x), or in other words,

ri−2(x) = qi(x)ri−1(x) + ri(x) with deg(ri(x)) < deg(ri−1(x)). (3.5.3)

Stop, after N divisions, as soon as you get a remainder rN (x) = 0.

3. Claim. The last nonzero remainder rN−1(x) is gcd(a(x), b(x)).

As with the ordinary Euclidean Algorithm 2.4.1, if we write out the iterations of the
polynomial Euclidean Algorithm 3.5.4 in order, we get something like:

r−1(x) = q1(x)r0(x) + r1(x) [deg(r1(x)) < deg(r0(x))]

r0(x) = q2(x)r1(x) + r2(x) [deg(r2(x)) < deg(r1(x))]

r1(x) = q3(x)r2(x) + r3(x) [deg(r3(x)) < deg(r2(x))]

...

rN−3(x) = qN−1(x)rN−2(x) + rN−1(x) [deg(rN−1(x)) < deg(rN−2(x))]

rN−2(x) = qN (x)rN−1(x)

(3.5.4)

Same as before, really! Except that the degree decreases each time, not the absolute value.

Example 3.5.5. Let a(x) = x4 +2x3 +3x2 +4x+2 and b(x) = x3 + x+2 be polynomials
in F5[x]. Applying the Euclidean Algorithm, and keeping in mind that 2(3) = 1 in F5 (i.e.,
2 and 3 are inverses), we get:

x4 + 2x3 + 3x2 + 4x+ 2 = (x+ 2)(x3 + x+ 2) + (2x2 + 3)

x3 + x+ 2 = (3x)(2x2 + 3) + (2x+ 2)

2x2 + 3 = (x+ 4)(2x+ 2)

(3.5.5)

Note that we’re leaving out a lot of computation at each step, because each step involves a
polynomial division with remainder! In any case, since 2x+2 is the last nonzero remainder,
gcd(x4 + 2x3 + 3x2 + 4x+ 2, x3 + x+ 2) = 2x+ 2, and the algorithm finishes in 3 steps.

60 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

After that warmup, we’re now ready to verify that the Euclidean Algorithm works.

Theorem 3.5.6. The polynomial Euclidean Algorithm 3.5.4 terminates after finitely many
steps, and the result is actually equal to gcd(a(x), b(x)).

Proof. Keeping the notation of the Euclidean Algorithm 3.5.4, since degrees of nonzero poly-
nomials are nonnegative integers, that the the number of steps in the Euclidean Algorithm
is bounded above by deg(r0) + 1, so it will eventually stop.

So that was slightly different than before, but the proof of the correctness of the answer
is almost exactly the same! I’ll leave the details to you, but briefly:

� If d(x) is a common divisor of a(x) and b(x), starting from the top and working down,
we see that d(x) divides rN−1(x), meaning deg(rN−1(x)) is as large as the degree of
any common divisor (Problem 3.5.6).

� On the other hand, working up from the bottom, we see that rN−1(x) is actually a
common divisor of a(x) and b(x) (Problem 3.5.7).

Therefore, by definition, rN−1(x) = gcd(a(x), b(x)).

Again, our proof of Theorem 3.5.6 yields a fact that seems even more nonobvious than
its integer analogue.

Corollary 3.5.7. For a field F and nonzero a(x), b(x) ∈ F [x], any common divisor of a(x)
and b(x) also divides gcd(a(x), b(x)) (as obtained from the Euclidean algorithm).

Armed with Corollary 3.5.7, we can now resolve the question of Ask Yourself 3.5.3. We
first need an analogue of Definition 2.1.6.

Definition 3.5.8. Let F be a field and a(x), b(x) ∈ F [x]. To say that a(x) and b(x) are
associates, or that a(x) and b(x) are the same up to associates, means that a(x) = u(x)b(x),
where u(x) is a unit in F [x]. In other words, two polynomials are the same up to associates
exactly when each is a nonzero constant multiple of the other.

Corollary 3.5.9. For a field F and nonzero a(x), b(x) ∈ F [x], any two greatest common
divisors of a(x) and b(x) are associates. In other words, gcd(a(x), b(x)) is determined
exactly up to associates.

For example, in Example 3.5.5, we found that gcd(x4+2x3+3x2+4x+2, x3+x+2) =
2x+ 2, but we could just as correctly say that the GCD is x+ 1, 4x+ 4, or 3x+ 3.

Proof. Let d(x) = gcd(a(x), b(x)) as obtained from the Euclidean algorithm, and let f(x)
be some other GCD of a(x) and b(x). By definition of GCD, we must have deg(f(x)) =
deg(d(x)), and by Corollary 3.5.7, f(x) divides d(x). But polynomials that divide each
other must be associates (Problem 3.5.8). The corollary follows.

We finish this section with two Real-life Applications (3.5.14 and 3.5.15) of the polyno-
mial Euclidean Algorithm. First, however, we should introduce the problem those applica-
tions solve. To begin with, we define the analogue of prime numbers for polynomials.

3.5. THE EUCLIDEAN ALGORITHM FOR POLYNOMIALS 61

Definition 3.5.10. Let F be a field, and let p(x) ∈ F [x] be a polynomial with coefficients
in F . To say that p(x) is irreducible means that p(x) is not a unit in F [x] and, if p(x) =
f(x)g(x) for f(x), g(x) ∈ F [x], then one of f(x), g(x) must be a unit in F [x]. If f(x) ∈ F [x]
is not irreducible, then we say that f(x) is reducible.

Ask Yourself 3.5.11. Play with Definition 3.5.10 for a while, as you should do with
any significant new definition. How is Definition 3.5.10 an analogue of the usual definition
of prime number? Can you come up with some examples of irreducible p(x) ∈ Q[x]?
What does it mean to say that p(x) is not a unit? Why are linear polynomials (x − α)
(α ∈ F) always irreducible? What are some examples of factorizations p(x) = f(x)g(x) for
irreducible p(x)? Reducible p(x)?

Just as any integer can be factored into primes, in essentially only one way, we can prove
that:

Theorem 3.5.12 (Unique Factorization for polynomials). For a field F , any f(x) ∈ F [x]
can be factored into irreducibles in essentially only one way.

But we’ll wait to prove that fact until Section 4.3. Note that Theorem 3.5.12 has the
vague term “essentially” in it, and whenever you see a term like that (in math or in life),
that’s a signal to count the silverware (metaphorically speaking). However, it turns out
that there’s nothing dishonest about that “essentially”; it just refers to the fact that, for
example, x2−1 can be factored both as (x+1)(x−1) and (2x−2)(12x+

1
2), but the second

factorization isn’t really any different than the first. (In fact, we actually see the same kind
of factoring ambiguity in the integers: 6 is both 2 · 3 and (−3) · (−2).)

In any case, we can now state the problem that motivates our two applications of the
polynomial Euclidean Algorithm.

Motivating Problem 3.5.13. Given F = Q or Fp and f(x) ∈ F [x], factor f(x) into
irreducibles.

For some small cases of Motivating Problem 3.5.13, and of the related problem of finding
irreducible polynomials of a given degree, see Problems 3.5.10 and 3.5.11.

You can think of Motivating Problem 3.5.13 as an analogue to the perhaps better-
known problem of factoring integers, which has long been studied for its importance to
cryptography (see your favorite book on cryptography, such as [reference?]). As we’ll see,
it’s also a stepping stone to solving related cryptography problems like the discrete logarithm
problem, which we’ll discuss in Chapter 10.

Returning to our main topic, we can now explain two real-life applications of the Eu-
clidean Algorithm.

Real-life Application 3.5.14. Many algorithms for factoring a polynomial f(x) ∈ F [x]
begin with the assumption that f(x) is square-free, or in other words, that f(x) has no
repeated irreducibles in its (unique) factorization. It is a fact that if f ′(x) is the derivative

of f(x), computed in the usual algebraic manner (even if F = Fp!!), then
f(x)

gcd(f(x), f ′(x))

62 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

is a square-free polynomial with the same irreducible factors as f(x) (Problem 3.5.13).
Therefore, the polynomial Euclidean Algorithm provides a critical first step in factoring
polynomials. (See [reference?].)

Real-life Application 3.5.15. Extending Real-life Application 3.5.14, in the case where
F = Fp, Berlekamp’s Algorithm actually reduces factoring f(x) ∈ Fp[x] to a series of GCD
computations. As we shall see later, being able to factor polymomials in Fp[x] is very useful
when computing in what is known as a Galois field, and in fact, factoring can be used to
solve a problem known as the discrete logarithm problem in a Galois field. See [reference?].

Problems

3.5.1. Suppose F is a field and d(x), a(x), b(x) ∈ F [x]. Prove that if d(x) divides a(x) and
d(x) divides b(x), then d(x) divides a(x) + b(x).

3.5.2. Suppose F is a field and d(x), a(x), b(x) ∈ F [x]. Prove that if d(x) divides a(x),
then d(x) divides a(x)b(x).

3.5.3. For the following polynomials a(x), b(x) ∈ F2[x], use the Euclidean Algorithm to
find gcd(a(x), b(x)).

(a) a(x) = x5 + x2 + x, b(x) = x4 + x3 + x.

(b) a(x) = x5 + x4 + x2 + x+ 1, b(x) = x4 + x2.

(c) a(x) = x7 + x6 + x5 + x3 + x2 + x, b(x) = x6 + x5 + x4 + x3 + x.

(d) a(x) = x7 + x6 + x5 + x4 + 1, b(x) = x6 + x5 + x4 + x2 + x+ 1.

3.5.4. For the following polynomials a(x), b(x) ∈ F3[x], use the Euclidean Algorithm to
find gcd(a(x), b(x)).

(a) a(x) = 2x4 + 2x3 + x2 + x, b(x) = x3 + x2 + 1.

(b) a(x) = 2x5 + 2x4 + 2x3 + x2 + x+ 2, b(x) = 2x4 + x3 + 2.

(c) a(x) = x7 + x6 + 2x4 + x3 + x2 + 2x, b(x) = 2x6 + x5 + x4 + x3 + x2 + 2.

(d) a(x) = x7 + x6 + 2x5 + x4 + x3 + 2x+ 1, b(x) = x6 + x5 + x4 + 2x3 + x2 + 2.

3.5.5. For the following polynomials a(x), b(x) ∈ F5[x], use the Euclidean Algorithm to
find gcd(a(x), b(x)).

(a) a(x) = x4 + 4x3 + x2 + 2x, b(x) = x2 + 4x+ 1.

(b) a(x) = 4x4 + 2x3 + x2 + x+ 1, b(x) = 3x3 + 4x2 + 3x+ 1.

(c) a(x) = 4x6 + 2x5 + 2x4 + x2 + x, b(x) = 4x5 + 2x4 + x3 + 2x.

(d) a(x) = x7 + x6 + 2x4 + 4x3 + 2x, b(x) = 2x6 + 2x5 + x4 + x3 + 3x2 + 2x+ 3.

3.5.6. (Proves Theorem 3.5.6) In the the notation of the Euclidean Algorithm 3.5.4, sup-
pose d(x) is a common divisor of a(x) = r−1(x) and b(x) = r0(x). Prove that d(x) also
divides r1(x), r2(x), . . . , rN−1(x).

3.5. THE EUCLIDEAN ALGORITHM FOR POLYNOMIALS 63

3.5.7. (Proves Theorem 3.5.6) In the the notation of the Euclidean Algorithm 3.5.4, let
d(x) = rN−1(x). Prove that d(x) is a common divisor of rN−1(x) and rN−2(x), rN−2(x)
and rN−3(x), . . . , r0(x) = b(x) and r−1(x) = a(x).

3.5.8. (Proves Corollary 3.5.9) Let F be a field, and suppose f(x), g(x) ∈ F [x] are polyno-
mials such that f(x) divides g(x) and g(x) divides f(x). Prove that f(x) and g(x) must have
the same degree, and in fact, that f(x) = cg(x), where c is a nonzero constant polynomial
(i.e., c ∈ F and c ̸= 0).

3.5.9. The goal of this problem is to prove that the Euclidean Algorithm computes gcd(a(x), b(x))
in O(n) time, where n is the larger of deg(a(x)) and deg(b(x)).

(a) Define a monomial division with remainder to be an operation of the form

f(x) = axkd(x) + r(x), (3.5.6)

where deg(r(x)) < deg(f(x)). Explain, by way of an example, how an ordinary division
with remainder is made from a number of monomial divisions with remainder.

(b) Prove that the polynomial Euclidean Algorithm ends after n monomial divisions with
remainder, where n is the larger of deg(a(x)) and deg(b(x)). (If we take monomimal
divisions as our unit of time, this gives O(n).)

3.5.10. This problem establishes an algorithm (not necessarily an efficient one) for checking
whether a polynomial of degree 2 or 3 in Fp[x] is irreducible, without doing any long division.

(a) Let f(x) be a polynomial of degree 2 or 3 in Fp[x]. Prove that if f(x) = g(x)h(x),
where neither g(x) nor h(x) is a unit, then one of g(x) or h(x) must have degree 1.

(b) Use part (a) and the Factor Theorem 3.4.8 to create an algorithm that, given a poly-
nomial f(x) in Fp[x] of degree 2, determines whether f(x) is irreducible without doing
any long division.

(c) Use part (a) and the Factor Theorem 3.4.8 to create an algorithm that, given a poly-
nomial f(x) in Fp[x] of degree 3, determines whether f(x) is irreducible without doing
any long division.

3.5.11. In this problem, you are to find all monic irreducible polynomials up to a certain
degree in various Fp[x]. Use Problem 3.5.10 in each part.

(a) Find all monic irreducible polynomials up to degree 3 in F2[x].

(b) Find all monic irreducible polynomials up to degree 3 in F3[x].

(c) Find all monic irreducible polynomials up to degree 2 in F5[x].

3.5.12. This problem gives a purely algebraic proof of the product rule and a special case
of the chain rule. (finish this later)

(defn derivative)

64 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

(a) product rule by grunge it out

(b) (f(x))k case of chain rule by induction

3.5.13. This problem requires you to remember the product and chain rules, either from
calculus or from Problem 3.5.12.

(a) Suppose f(x) ∈ Q[x] has a repeated factor in its unique factorization; that is, suppose
that

f(x) = q(x)p(x)k (3.5.7)

for some p(x) ∈ Q[x] and k ≥ 2. Prove that (p(x))k−1 divides f ′(x).

(b) Prove that
f(x)

gcd(f(x), f ′(x))
is square-free.

3.6 Bezout’s identity for polynomials

Following the tenets of the Church of Abstraction, we now repeat the material on Bezout’s
Identity over the integers from Section 2.5, entirely analogously. (Really, by mathematicians’
standards, almost word for word.)

Theorem 3.6.1 (Bezout’s Identity for polynomials). Let F be a field, and let a(x), b(x) ∈
F [x] be polynomials with coefficients in F . The equation

a(x)f(x) + b(x)g(x) = gcd(a(x), b(x)) (3.6.1)

has a solution f(x), g(x) ∈ F [x].

Everything works almost exactly like it does in the proof of Theeorem 2.5.1.

Proof. Retaining the notation of the Euclidean Algorithm 3.5.4, we see that if we define an
F [x]-linear combination of a(x) and b(x) to be a polynomial of the form a(x)f(x)+b(x)g(x)
for some f(x), g(x) ∈ F [x], then our goal is to show that rN−1(x) = gcd(a(x), b(x)) is an
F [x]-linear combination of a(x) and b(x).

To start, note that r−1(x) = a(x) and r0(x) = b(x) are each F [x]-linear combinations
of a(x) and b(x). Then, since we can rewrite each step of the Euclidean Algorithm (see
(3.5.4)) as

rn(x) = rn−2(x)− qn(x)rn−1(x), (3.6.2)

working down the equations in (3.5.4), we see that the fact that each rn(x) is an F [x]-linear
combination of a(x) and b(x) follows from the same fact for rn−2(x) and rn−1(x). The
theorem follows.

Because there’s no need to invent a new name when we have a perfectly good name al-
ready, we again call the algorithm in the proof of Bezout’s identity for polynomials Euclidean
Rewriting. And again, to be explicit:

3.6. BEZOUT’S IDENTITY FOR POLYNOMIALS 65

Algorithm 3.6.2 (Euclidean Rewriting). Let F be a field, and let a(x), b(x) ∈ F [x] be
nonzero polynomials with coefficients in F . To solve the equation a(x)f(x) + b(x)g(x) =
gcd(a(x), b(x)) for f(x) and g(x):

1. Perform the Euclidean Algorithm 3.5.4 to calculate gcd(a(x), b(x)). We use the nota-
tion of Algorithm 3.5.4 in the rest of what follows.

2. Rewrite each step of the Euclidean Algorithm in the form

ri(x) = ri−2(x)− qi(x)ri−1(x). (3.6.3)

3. For i going from 1 to N − 1, since ri−2(x) and ri−1(x) have already been expressed
as F [x]-linear combinations of a(x) and b(x), use (3.6.3) to rewrite ri(x) as a F [x]-
linear combination of a(x) and b(x). (Note that in the first step, we use the fact that
r−1(x) = a(x) and r0(x) = b(x).)

Example 3.6.3. Consider a(x) = x4 + 3x3 + 2x2 + x+ 3 and b(x) = x3 + 3x2 + 3x+ 3 in
F5[x] (i.e., all coefficients are taken mod 5). We use Euclidean Rewriting to find a solution
f(x), g(x) ∈ F5[x] to a(x)f(x)+ b(x)g(x) = gcd(a(x), b(x)). First, the Euclidean Algorithm
gives:

x4 + 3x3 + 2x2 + x+ 3 = x(x3 + 3x2 + 3x+ 3) + (4x2 + 3x+ 3)

x3 + 3x2 + 3x+ 3 = (4x+ 4)(4x2 + 3x+ 3) + (4x+ 1)

(4x2 + 3x+ 3) = (x+ 3)(4x+ 1),

(3.6.4)

so gcd(a(x), b(x)) = 4x+ 1, or up to associates, x+ 4. Rewriting then gives us:

4x2 + 3x+ 3 = a(x)− xb(x) = a(x) + 4xb(x)

4x+ 1 = b(x)− (4x+ 4)(4x2 + 3x+ 3)

= b(x)− (4x+ 4)(a(x) + 4xb(x))

= (x+ 1)a(x) + (4x2 + 4x+ 1)b(x).

(3.6.5)

Again, as with integers, we have the following consequence of Bezout’s Identity, which
(as unlikely as it might seem) will again be useful later.

Corollary 3.6.4. Let F be a field, and let a(x), b(x), c(x) ∈ F [x] be nonzero polynomials
with coefficients in F . The equation

a(x)f(x) + b(x)g(x) = c(x) (3.6.6)

has a solution f(x), g(x) ∈ F [x] if and only if gcd(a(x), b(x)) divides c(x).

Problems

3.6.1. For the following polynomials a(x), b(x) ∈ Fp[x], use Euclidean Rewriting to find
f(x), g(x) ∈ Fp[x] such that a(x)f(x) + b(x)g(x) = gcd(a(x), b(x)). (When p = 3, use
−1, 0, 1 for all coefficients.)

66 CHAPTER 3. MORE: THE POLYNOMIAL EUCLIDEAN ALGORITHM

(a) In F3[x], a(x) = x4 − x3 + x2 + x+ 1, b(x) = x4 + x+ 1.

(b) In F2[x], a(x) = x5 + x4 + x+ 1, b(x) = x4 + x2 + x+ 1.

(c) In F3[x], a(x) = x5 + x2 − x+ 1, b(x) = x5 + x4 + x3 − x2 + 1.

(d) In F2[x], a(x) = x6 + x5 + x4 + x3 + 1, b(x) = x4 + x2 + 1.

(e) In F3[x], a(x) = x6 + x4 − x3 + x2 + x+ 1, b(x) = x5 + x3 − x2 − x− 1.

(f) In F2[x], a(x) = x6 + x4 + x3 + x2 + x+ 1, b(x) = x6 + x5 + x4 + x3 + x+ 1.

Chapter 4

Rings and fields

Integers, rationals, complexes, reals
And polynomials and all their ideals
Real-valued functions and similar things
These are a few of my favorite rings

— Cambridge University maths department, mid-80’s (sung to the tune of
“My Favorite Things” from The Sound of Music)

4.1 Why abstraction?

You may be wondering:

What was that all about? What is this stuff even good for? Can you really make
money computing GCDs, or even factoring polynomials?

On the other hand, you might also be wondering:

What actually is a ring, exactly? How can you tell if something is a ring or not?
The Euclidean Algorithm works for integers, and it works for polynomials with
coefficients in a field (whatever that is); does it work in any other situations?

If you’re in the second camp of wanting more precision and generalization, this chapter
is what you’ve been waiting for. However, if you’re still skeptical about the value of theory,
let’s step back a minute and talk about what happened in the previous two chapters, and
how we’ll redo all that in this chapter, following our central dogma:

Abstraction ⇒ Simplification ⇒ Generalization ⇒ Power

67

68 CHAPTER 4. RINGS AND FIELDS

� Abstraction: The first step in abstract mathematics, at least logically speaking*, is
to replace the specific examples in which we’re interested (integers, polynomials) with
a more general object defined by certain axioms (a ring, or by the end of this chapter,
a Euclidean domain).

� Simplification: Having axiomatized our favorite examples, we look at what we know
about them, strip out all of the inessential features (e.g., details about negatives or
the GCD of two polynomials only being defined up to multiplication by a nonzero
constant), and either replace those inessentials with another abstraction (e.g., the
idea of associates) or leave them out entirely. Note that “simpler” doesn’t mean
easier — abstraction can be more difficult to grasp than specific examples! But in
a literal sense, the abstract version of something generally has fewer details and less
going on, and can therefore be fairly described as simpler.

� Generalization: Because the abstract version of an idea is simpler, it has the po-
tential to apply to examples other than the ones we already know.

� Power: That’s the power of the abstract approach: If we can understand an idea
(in this chapter, GCD and factorization) purely in terms of an axiomatically defined
object, then the results we get apply to anything satisfying those axioms.

Full disclosure, this particular case of the axiomatic method (rings and Euclidean do-
mains) doesn’t actually apply to that many useful examples other than the ones we’ve al-
ready seen (integers and polynomials), so in that sense, it’s not the strongest advertisement
for the power part of our central dogma. However, we needed to establish our fundamental
examples of Fp = Z/(p) and F [x] and we needed to introduce the language of rings and
fields, so, well, you gotta start somewhere!

Anyway, sermon over for now, and back to our regularly scheduled program.

4.2 Rings and fields

We still need one preliminary definition before the main event.

Definition 4.2.1. A binary operation on a set S takes two inputs in S and produces one
output in S, and is usually written as an operator like + or ·. For example, ordinary
addition and multiplication are binary operations on the real numbers.

Note that part of Definition 4.2.1 is that binary operations must have the property of
closure. That is, for a binary operation to be a legitimate operation on a set S, given two
inputs in S, it must actually produce an output in S.

At long last, we now finally define what a ring is.

*Truth be told, though, in historical terms, or when you make up new abstract math yourself, the process
is much more like what has happened here: First we have one example, then someone notices similarities
in another example, and only the does someone think to generalize our known examples in an axiomatic
object.

4.2. RINGS AND FIELDS 69

Definition 4.2.2 (Ring). A ring is a choice of a set R and a choice of two binary operations,
+ and ·, on R, such that the following eight axioms all hold.

� (+ associative) For any a, b, c ∈ R, (a+ b) + c = a+ (b+ c).

� (+ commutative) For any a, b ∈ R, a+ b = b+ a.

� (Zero) There exists some 0 ∈ R such that for all a ∈ R, 0 + a = a = a+ 0.

� (Negatives) For every a ∈ R, there exists some −a ∈ R such that (−a) + a = 0 =
a+ (−a).

� (· associative) For any a, b, c ∈ R, (ab)c = a(bc).

� (· commutative) For any a, b ∈ R, ab = ba.

� (One) There exists some 1 ∈ R such that for all a ∈ R, 1a = a = a1.

� (Distributive) For any a, b, c ∈ R, a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

We also define a− b to be an abbreviation for a+ (−b).

As I told you back in Section 1.1, a mathematical definition tells you what an object
is, not what it means, and indeed, I wouldn’t expect most people reading the nonsense in
Definition 1.1 for the first time to have an idea of what’s going on there. So here are some
ways to interpret Definition 1.1.

� The first thing to note is that the + and · defined on some set R might not be the
definitions of + and · you’re used to. As an extreme example, we can choose the real
numbers R as the set for our ring and define the sum of x, y ∈ R to be min(x, y) and
the product to be x + y, and we almost get a ring out of that; see Problem 4.2.1.
(This is called a tropical structure on the real numbers, and is surprisingly useful; see
[reference?].)

� The first four axioms basically say that addition and subtraction work for the elements
of any ring much as they do for ordinary real numbers.

� The next three axioms basically say that multiplication on its own (without involving
addition or subtraction yet) works as it does for real numbers.

� Note that none of the axioms of a ring involve both addition and multiplication except
for the distributive law, and so the distributive law is the key to what makes a ring a
ring. For example, nowhere in the axioms of a ring R does it say that 0r = 0 for all
r ∈ R; that’s actually a consequence of the axioms, and the distributive law plays a
prominent role in that fact (Problem 4.2.4) and, well, basically everything else in ring
theory.

70 CHAPTER 4. RINGS AND FIELDS

� To sum up the previous three points, if R is a ring, the axioms of a ring generally
allow us to manipulate expressions involving elements of R as if they were expressions
in high school algebra, with one major exception. For example, if R is a ring and
a, b, c, d ∈ R, then applying the distributive law twice gives us the “FOIL formula”:

(a+ b)(c+ d) = a(c+ d) + b(c+ d) = ac+ ad+ bc+ bd.

The exception to this general principle is that unless an element a has a multiplicative
inverse (see Definition 4.2.9 below), we can’t divide by a.

� One hitch in the definition of a ring is that different authors define ring differently.
The two biggest variations are:

– Many authors don’t require multiplication in a ring to be commutative. In their
terms, our rings are all commutative rings; conversely, in the few cases where
we want to describe an object that has all of the properties of a ring except
commutativity of multiplication, we call that object a noncommutative ring.

– Many authors also do not require a ring to contain a “1” element, whereas we
do. Those authors distinguish rings containing a 1 element by calling them rings
with unity. Probably the best way to think about this question is: Do we want
the even integers to be included in the definition of ring? For our purposes, I
prefer to require rings to contain 1, as it simplifies many statements, even with
the downside that the even integers are no longer a ring under our definition.

In short: When we say ring, we mean what others might call a “commutative ring
with unity”.

Example 4.2.3. As the song says at the beginning of the chapter, the integers Z, the
rational numbers Q, the real numbers R, and the complex numbers C are all rings, and
you’ve been taught that (without using the word ring) your entire mathematical life.� Also,
if R is a ring, you can go through and check that R[x] (Definition 3.3.1) satisfies the axioms
of a ring. (Though to be honest, that verification is pretty boring, so we’ll just leave it out
entirely.)

Example 4.2.4. The integers mod n (Definition 3.1.3) also form a ring, but here the
axioms are not as straightforward to check. For example, associativity of addition, while
not necessarily difficult to prove, is at the very least a notational mess. (Try it yourself!)
So instead of spending a lot of time on that, we’ll delay proving that Z/(n) is a ring until
Section 7.2, where the proof will be muich more natural, thanks to some further abstract
nonsense to be developed in Chapter 7.

Remark 4.2.5. Now that we’ve finally defined what a ring is, it seems like a good time to
confess that the name ring doesn’t come from the “arena” idea we’ve been discussing since

�In fact, you can make a pretty strong case that much of high school algebra is ring theory.

4.2. RINGS AND FIELDS 71

3

1

5

2

4

0

Figure 4.2.1: Where the name “ring” comes from

Section 2.1. The name actually comes from thinking of Z/(n) as the integers wrapped in a
circle, as illustrated for n = 6 in Figure 4.2.1. (The arena idea is still a useful way to think
about rings, though!)

You may still be asking yourself, now that we’ve finally defined what a ring is, what
can we do with that idea? And the truth is, not much on its own, other than a few very
basic things (see Problems 4.2.2–4.2.4). What actually happens is, to understand a given
class of examples we want to understand, we figure out the key property that makes all of
them work a certain way (the hard part!), create a definition based on that property, and
then prove results about rings with that property. For example, we have the following more
standard name for a ring with the zero factor property (Definition 3.3.7).

Definition 4.2.6. To say that a ring R is a domain (or sometimes, an integral domain)
means that if a, b ∈ R and ab = 0, then either a = 0 or b = 0. On the other hand, if a, b ∈ R,
both a ̸= 0 and b ̸= 0, and we still have ab = 0, we say that a and b are zero divisors in R.

Theorem 3.3.8 can then be restated as:

Corollary 4.2.7. If R is a domain and f(x), g(x) ∈ R[x], then

deg(f(x)g(x)) = deg(f(x)) + deg(g(x)), (4.2.1)

where −∞ plus anything is −∞.

Domains also have not only the Zero Factor Property, but also the more general cancel-
lation property.

Theorem 4.2.8. If R is a domain, a, b, c ∈ R, a ̸= 0, and ab = ac, then b = c.

Proof. Problem 4.2.5.

The definitions of inverse, unit, and field are as before, though we repeat them here for
convenience.

Definition 4.2.9. Let R be a ring. For a ∈ R, an inverse of a is some b ∈ R such that
ab = 1. Since an element can have only one inverse, we use a−1 to denote the inverse of a.
To say that a is a unit in R means that a has an inverse in R.

72 CHAPTER 4. RINGS AND FIELDS

Definition 4.2.10. A field is a ring R in which every nonzero element is a unit and 1 ̸= 0.
In other words, to say that a nonzero ring R is a field means that for every a ̸= 0 in R,
there exists some b ∈ R such that ab = 1.

Example 4.2.11. As you well know, the rationals Q and the real numbers R are both
fields. You may be less familiar with the fact that the complex numbers are a field, which
follows because

1

a+ bi
=

a− bi

(a+ bi)(a− bi)
=

(
a

a2 + b2

)
−
(

b

a2 + b2

)
. (4.2.2)

In addition, Corollary 3.2.8 shows that Z/(p) is a field.

As mentioned earlier, fields have the zero factor property.

Theorem 4.2.12. If F is a field, then F is a domain.

Proof. Problem 4.2.6.

Finally, we at last justify the use of fractions throughout Chapter 3.

Definition 4.2.13. Let R be a ring, and suppose that a, b ∈ R and b is a unit. We define

the fraction
a

b
to be ab−1.

What justifies Definition 4.2.13 is that fractions, as defined there, follow the usual rules
of fractions of ordinary numbers.

Theorem 4.2.14. Let R be a ring, and suppose that a, b, c, d ∈ R and that b and d are
units in R. If fractions are defined as in Definition 4.2.13, then

ad

bd
=

a

b

(a
b

)(c
d

)
=

ac

bd

a

b
+

c

d
=

ad+ bc

bd
(4.2.3)

Proof. Problem 4.2.7.

Problems

4.2.1. Define operations ⊕ (“tropical addition”) and ⊗ (“tropical multiplication”) on the
extended real numbers R ∪ {∞} by

a⊕ b = min(a, b),

a⊗ b = a+ b.
(4.2.4)

Prove that the tropical operations turn R ∪ {∞} into a semiring, i.e., prove that all of the
axioms of a ring are satisfied except for negatives, if we take the “zero” element to be ∞
and the “one” element to be 0.

4.2.2. Prove that if R is a ring, and 0 and 0′ are both zero elements of R, then 0 = 0′.

4.3. FACTORING AND EUCLIDEAN DOMAINS 73

4.2.3. Let R be a ring, let a be a nonzero element of R, and suppose that b and c are each
inverses of a. Prove that b = c. (In other words, multiplicative inverses are unique in a
ring.)

4.2.4. Prove that if R is a ring and a ∈ R, then 0a = 0. (Suggestion: Consider 0 + 0 and
use the Distributive Law.)

4.2.5. (Proves Theorem 4.2.8) Prove that if R is a domain (Definition 4.2.6), a, b, c ∈ R,
ab = ac, and a ̸= 0, then b = c.

4.2.6. Prove that if F is a field (Definition 4.2.10), a, b ∈ R, ab = 0, and a ̸= 0, then b = 0.
(This is logically equivalent to the Zero Factor Property.)

4.2.7. Let R be a ring, and suppose that a, b, c, d ∈ R and that b and d are units in R.
Carefully justify each step by the axioms of a ring and what has already been proven about
inverses, etc.

(a) Prove that (bd)−1 = b−1d−1. (Suggestion: What times bd equals 1? Use Prob-
lem 4.2.3.)

(b) Prove that
ad

bd
=

a

b
.

(c) Prove that
(a
b

)(c
d

)
=

ac

bd
.

(d) Prove that
a

b
+

c

d
=

ad+ bc

bd
.

4.3 Factoring and Euclidean domains

And now, a dirty secret about abstraction.

The abstract version of a body of knowledge is the most interesting special case(s),
with unnecessary stuff stripped away.

Again, you may object (for instance, in this section!) that there’s nothing new in the
abstract version, but to review:

� Simplification: Isolating what’s important in a set of ideas is interesting in its own
right.

� Generalization: Concepts developed through abstraction apply in other cases.

� Power: As a hammer can be used to hit many kinds of nails, an abstract body of
knowledge can be used to solve many different problems.

74 CHAPTER 4. RINGS AND FIELDS

So let’s get to it. First, we need to generalize the basic ideas of factoring that you
learned in K–12 to domains, i.e., rings with the zero factor property. (The zero factor
property avoids a number of annoying complications.)

Definition 4.3.1. Let R be a domain and a, b, d ∈ R. To say that d divides a means that
a = qd for some q ∈ R. To say that d is a common divisor of a and b means that d divides
both a and b.

One definition that actually has to be changed substantively for general rings is the
definition of “greatest” common divisor, as many rings don’t have a natural definition of
size. Instead, we incorporate Corollaries 2.4.5 and 3.5.7 as part of the definition.

Definition 4.3.2. Let R be a domain and a, b ∈ R. To say that d is a greatest common
divisor of a and b means that two things hold:

� d is a common divisor of a and b; and

� If e is a common divisor of a and b, then e divides d.

Definition 4.3.3. To say that a, b ∈ R are associates means that a = ub for some unit
u ∈ R.

As with integers and polynomials with field coefficients, the point of units is that they
don’t affect divisibility in any substantive way; in particular, associate ring elements are
the same with respect to their factorization properties (Problem 4.3.1).

Definition 4.3.4. Let R be a domain. To say that r ∈ R is irreducible means that r is not
a unit and that if r = ab for a, b ∈ R, then one of a and b must be a unit.

Ask Yourself 4.3.5. What happens when you specialize Definitions 4.3.1–4.3.4 to R = Z
and R = F [x] (F a field)? For example, we get a slightly different definition of a prime
integer p: To say that p ∈ Z is prime means that p ̸= ±1 and if p = ab, then one of a or b
must be ±1. Not quite the definition you learned in school — we explicitly allow negative
primes, which are equivalent to their associated positive versions.

We can now describe our abstract, generalized version of the Euclidean Algorithm, using
a classic move in the world of abstract nonsense: We isolate the one thing that makes the
Euclidean Algorithm work and turn it into an axiom (Definition 4.3.7). That way, if R is
a domain that satisfies the axiom, then everything we’ve developed about the Euclidean
Algorithm will work in R.

We start with a preliminary definition.

Definition 4.3.6. Let R be a domain. A size function on R is a function σ : R → Z∪{−∞}
such that for all nonzero r ∈ R, σ(r) ≥ 0 and σ(r) > σ(0). In other words, a size function
σ takes elements of R as its inputs, outputs nonnegative integers for nonzero inputs, and
has σ(0) strictly smaller than any other output.

4.3. FACTORING AND EUCLIDEAN DOMAINS 75

Definition 4.3.7. A Euclidean domain is a domain R with a size function σ that satisfies
the following axiom: For a, d ∈ R, d ̸= 0, there exist q, r ∈ R such that

a = qd+ r with σ(r) < σ(d). (4.3.1)

In other words, a Euclidean domain is a domain where some version of the Division Theorem
holds. (Compare Theorems 2.3.1 and 3.4.4.)

As always, especially with slightly strange-looking definitions like Definitions 4.3.6 and 4.3.7,
it’s important to check that there are actually examples. (There are a number of well-known,
if apocryphal, stories in mathematics about wonderful axiom systems with precisely zero
examples.)

Example 4.3.8. The ring R = Z with the size function σ(r) = |r| is a Euclidean domain,
because of Theorem 2.3.1. Furthermore, if F is a field, then the ring F [x] with the size
function σ(f(x)) = deg(f(x)) is a Euclidean domain, because of Theorem 3.4.4.

Unfortunately, and this is a shortcoming of the idea, there are not a lot of other examples
of Euclidean domains! (We’ll see some good reasons why below, as well as in Section 7.4.)
One other prominent example is the Gaussian integers Z[i], defined by

Z[i] = {a+ bi | a, b ∈ Z} . (4.3.2)

In other words, the Gaussian integers are to the complex numbers as the ordinary integers
are to the real numbers. In any case, the point is, if we take

σ(a+ bi) = (a+ bi)(a− bi) = a2 + b2, (4.3.3)

then the Gaussian integers are a Euclidean domain; see Problem 4.3.3.

The point of a Euclidean domain, of course, is that the Euclidean algorithm works in any
Euclidean domain; in fact, the general Euclidean domain looks just like it did for integers.

Algorithm 4.3.9 (The Euclidean Algorithm). Let R be a Euclidean domain, and let a
and b be nonzero elements of R.

1. Initialize. Let r−1 = a and r0 = b.

2. Main loop. For i = 1, 2, . . . , apply the definition of Euclidean domain (Definition 4.3.7)
to divide ri−2 by ri−1 with quotient qi and remainder ri, or in other words,

ri−2 = qiri−1 + ri with σ(ri) < σ(ri−1). (4.3.4)

Stop, after N divisions, as soon as you get a remainder rN = 0.

3. Claim. The last nonzero remainder rN−1 is a greatest common divisor of a and b.

Theorem 4.3.10. Let R be a Euclidean domain, and let a and b be nonzero elements of
R.

76 CHAPTER 4. RINGS AND FIELDS

� The Euclidean Algorithm 4.3.9 terminates after finitely many steps, and the result
rN−1 = gcd(a, b) is actually a greatest common divisor of a and b.

� (Bezout) There exist x, y ∈ R such that

ax+ by = gcd(a, b). (4.3.5)

Since we have seen this proof twice already, I’ll leave most of the details to you.

Proof. Keeping the notation of the Euclidean Algorithm 4.3.9, since the size of ri decreases
by at least 1 at each step, the number of steps in the Euclidean Algorithm is bounded
above by σ(r0) + 1, so it will eventually stop. The other details are essentially the same;
see Problem 4.3.4.

Just so this chapter isn’t a complete repeat, here’s a new fact about Euclidean domains.

Theorem 4.3.11 (Unique factorization in Euclidean domains). Let R be a Euclidean do-
main, and let a be a nonzero, non-unit element of R. Then a can be factored as a product of
irreducible elements of R in essentially one way. That is, a = p1 · · · pk for some irreducible
elements pi ∈ R; and if

a = p1 · · · pk = q1 · · · qr (4.3.6)

with all pi, qj irreducible, then k = r, and we can rearrange the qj so that for 1 ≤ i ≤ k, we
have that pi is an associate of qi.

Now Theorem 4.3.11 isn’t completely new to you, as you probably learned the case
R = Z back in grade school, and you’ve certainly been assuming that it’s true in the case
R = R[x] since high school algebra. What’s perhaps more interesting is that there are
very reasonable-looking domains R where the conclusion of the theorem doesn’t hold. For
example, take

R = Z[
√
−5] =

{
a+ b

√
−5 | a, b ∈ Z

}
. (4.3.7)

Then

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5), (4.3.8)

where all four elements 2, 3, (1+
√
−5), (1−

√
−5) are irreducible. In other words, 6 can be

factored in R in two essentially different ways. Weird! So I hope it seems at least a little
more remarkable that unique factorization works in such new rings as Fp[x] (p prime).

In any case we’re not quite ready to prove Theorem 4.3.11 yet, as we’ll need to build
up more abstraction in Chapter 7; even then, we’ll only work out most of the details in
Appendix A. For now, it’s enough for you to get an idea of exactly what Theorem 4.3.11
means; see Problem 4.3.6.

4.3. FACTORING AND EUCLIDEAN DOMAINS 77

Problems

4.3.1. associates have same divisibility properties

(a) divides, then associate divides

(b) associates of irreducibles are irreducibles

4.3.2. Prove GCD unique up to associates, if one exists.

4.3.3. Prove Gaussian integers are an ED.

4.3.4. details of euclidean algorithm

4.3.5. details of bezout

4.3.6. This problem is meant to give you a better idea of what unique factorization really
means in Fp[x].

(a) Note that in F13[x],

6x2 − 6x+ 6 = (3x− 4)(2x+ 5) = (2)(7)(3x− 4)(2x+ 5). (4.3.9)

However, Theorem 4.3.11 says that any two factorizations of 6x2 − 6x + 6 into irre-
ducibles must use the same number of irreducible factors. Explain why this isn’t a
contradiction.

(b) Note that in F11[x],

x2 + x+ 2 = (x− 4)(x+ 5) = (4x− 2)(3x− 1). (4.3.10)

However, Theorem 4.3.11 supposedly says that any two factorizations of x2+x+2 into
irreducibles must use the “same” irreducibles. Explain why this isn’t a contradiction.

78 CHAPTER 4. RINGS AND FIELDS

Chapter 5

Linear algebra

It is upon the length and breadth and span of a body sustained in muscular action
that dance invokes its image.

— Merce Cunningham

All the women, who are independent
Throw your hands up at me

— Destiny’s Child, “Independent Women — Part 1”

ALL YOUR BASE ARE BELONG TO US

— the arcade video game Zero Wing

5.1 A data compression problem

Linear algebra is such a useful (and lucrative) field of math to know that there are a zillion
problems we could use as motivation for the rest of this chapter. To pick one, let’s start
with our main use of linear algebra in this book.

Consider the collection C = {a, b, c, d, e, f, g, h} of bitstrings (strings of 0s and 1s):

a = 00000 b = 00111 c = 01011 d = 01100

e = 10010 f = 10101 g = 11001 h = 11110
(5.1.1)

Looks pretty random, right? Well, it’s not obvious, but it turns out that C does have
one interesting closure property: If you add any two strings together by adding their corre-
sponding bits (mod 2)*, you get another bitstring in C. For example,

b+ e = 00111 + 10010 = 10101 = f, (5.1.2)

or for a less interesting example, h+h = 00000 = a. It follows that, for example, if we only
need to know the list of bitstrings in C, we could leave a and f off of the list and deduce that

*Or if you’re a computer scientist, taking the XOR of the bits.

79

80 CHAPTER 5. LINEAR ALGEBRA

they’re in C because of the closure property. Think of this as a sort of data compression
property — we didn’t need that whole list to define C.

Anyway, this begs the question:

Motivating Problem 5.1.1. What is the smallest number of bitstrings of C from which
we could recover all of C, just by knowing that C has the closure property?

Ask Yourself 5.1.2. Just knowing that b, c, e, g ∈ C, can you recover all of the other
bitstrings in C? How about if you just know that b, c, e ∈ C? How about if you just know
that b, c ∈ C? Try adding up some bitstrings and see!

Call a set of bitstrings B a minimal recovery set if we can recover C from B and the
closure property, but if you remove any element of B, this is no longer true. We’ll see later
(Problem 5.6.5) that {b, c, e} is actually a minimal recovery set, as is {d, f, h}. On the other
hand, you can’t actually recover all of C from {c, e, g} and the closure property (try it!).
That begs a whole bunch of other questions:

Motivating Problem 5.1.3. How can you tell if you can recover C from a given set of
bitstrings? Is there a more efficient method than adding bitstrings until we stop getting
something new?

Motivating Problem 5.1.4. What’s an efficient way to tell if B is a minimal recovery
set?

Motivating Problem 5.1.5. Are all minimal recovery sets the same size, or are some
minimal recovery sets size 3 and others (say) size 2?

Motivating Problem 5.1.6. Here’s a challenge: Find all 28 possible minimal recovery
sets for C. Minimal recovery sets never need a, so that’s a start, but there are still 127
nonempty subsets of {b, c, d, e, f, g, h}, so brute force might take a while. Is there a better
way to find those minimal subsets?

Rest assured, by Section 5.6, we’ll be able to resolve all of these questions. (See Prob-
lem 5.6.5 for a full answer.) What may be a little surprising, however, if you’re familiar
with linear algebra, is that the above motivating problems are actually the foundational
questions of linear algebra.

So with all that in mind, and especially if you haven’t seen any linear algebra before,
it’s time for some pictures.

5.2 Linear algebra in three cartoons

Before we get into linear algebra in the abstract version we’ll use to make money, let’s take
a big-picture look at linear algebra in ordinary 3-space, a.k.a. R3. (Again, if you’ve never
seen linear algebra before, fear not; we really will cover everything starting from scratch.)

The point of linear algebra in R3 is to study the vector space R3 and its subspaces.
There are four types of subspaces of R3, namely, the subspace containing just 0, lines

5.2. LINEAR ALGEBRA IN THREE CARTOONS 81

0 00 0

Figure 5.2.1: Subspaces of R3

through the origin, planes through the origin, and R3 itself, as shown in Figure 5.2.1. (The
cloud at the end is meant to represent all of R3.) These spaces can be characterized by
their dimensions, which are 0, 1, 2, and 3, respectively.

(5/3)v

0
w

v
−w

x

Figure 5.2.2: Bases define coordinates

Note that a subspace of dimension greater than 0 contains infinitely many vectors,
represented in Figure 5.2.1 as points in R3. To analyze a subspace W algebraically, we need
to be able to describe W by a finite data set, called a basis. A basis describes a subspace W
by defining coordinates on W . For example, Figure 5.2.2 shows a 2-dimensional subspace
W of R3, which is described by the indicated vectors v and w because every point in W
is equal to av + bw for some a, b ∈ R, as illustrated for x ∈ W and a = 5

3 , b = −1. Note
that W is 2-dimensional and we need exactly 2 vectors to describe W through coordinates;
in fact, we will later define the dimension of a subspace W to be the smallest number of
vectors required to describe W in this way.

And here we come to an important and often confusing point:

Even though there are only 2 vectors in a basis for a 2-dimensional subspace W
of R3, W contains far more than 2 vectors. In fact, W contains infinitely many
vectors!

Think of it as infinite data compression, a more extreme version of the data compression
we saw in Section 5.1: We’re encoding an infinite data set (the set of vectors in W) into a
finite set, and we’re even trying to make that finite set as small as possible.

82 CHAPTER 5. LINEAR ALGEBRA

x

0
w

v

Figure 5.2.3: A dependent set of vectors

Returning to bases, the property of being able to express every vector in W as a linear
combination av+ bw is called spanning. More precisely, if that property holds, we say that
{v,w} spans W . But here’s one tricky thing about that: If {v,w} spans W , we can add
another vector x and still be able to express every vector of W as a linear combination
av + bw + cx; see Figure 5.2.3. However, the resulting coordinates (a, b, c) will no longer
be unique, because the vectors v, w, and x are linearly dependent, or in other words,
have some linear relationship among themselves. (In fact, 5

3v − w − x = 0, exactly as in
Figure 5.2.2.) So to provide maximally useful coordinates, a spanning set also needs to be
linearly independent, like {v,w}. And that’s exactly what a basis is:

A basis for a subspace W is a linearly independent set that also spans W . You can
use a basis for W to describe exactly which vectors are contained in W in terms of
coordinates.

See Theorem 5.3.15 for a precise version of the above idea.
So that’s it, that’s linear algebra! Well OK, of course there’s much more to it, especially

in terms of calculations, which are the part of linear algebra you’re most likely to remember
if you’ve seen linear algebra before. But that’s the foundational idea: describing subspaces
in terms of bases. Anyway, we now go on to doing the same thing, but with an arbitrary field
F instead of R, and with definitions instead of pictures — the advantage being that thanks
to abstraction, we’ll be able to solve problems like the ones posed in Section 5.1. Still,
please do refer back to this section if and when you feel like you’re drowning in abstraction.

5.3 The foundations of linear algebra

The main part of linear algebra that we’ll need is the foundational theoretical ideas. Don’t
get me wrong — the calculations are important! But for us, the calculations are motivated
by theory, so we’ll start there. First, we describe the “arena” in which we do linear algebra.

Definition 5.3.1. Let F be a field and n ∈ N. We define

Fn =


x1...
xn


∣∣∣∣∣∣∣xi ∈ F

 , (5.3.1)

5.3. THE FOUNDATIONS OF LINEAR ALGEBRA 83

and we call the elements of Fn vectors; in particular, we call 0 =

0...
0

 the zero vector in

Fn. When we work with vectors, we often call the elements of F itself scalars.

We also define two operations on Fn. The first is vector addition: For

x1...
xn

 ,

y1...
yn

 ∈ Fn,

we define x1...
xn

+

y1...
yn

 =

x1 + y1
...

xn + yn

 . (5.3.2)

And the second is scalar multiplication: For a ∈ F and

x1...
xn

 ∈ Fn, we define

a

x1...
xn

 =

ax1...
axn

 . (5.3.3)

Example 5.3.2. For us, the most important case of Fn is where F = F2. The reason
is, since a vector in Fn is a column of n 0’s and 1’s, we can identify Fn with the set of
all bitstrings of length n, e.g., we can think of 001011101, a bitstring of length 9, as the

element



0
0
1
0
1
1
1
0
1


of F9

2. You would not believe how important and useful that idea is! (Though

Section 5.1 starts to give an idea of why this case is important, and I hope you’ll agree after
a few more chapters.)

As you saw in the first cartoon of Section 5.2, our main object of study in Fn is the
following concept.

Definition 5.3.3. For n ∈ N, a subspace of Fn is a subset W of Fn that satisfies three
properties:

1. W contains the zero vector 0;

2. (Closed under +) For any v,w ∈ W , we have v +w ∈ W ; and

84 CHAPTER 5. LINEAR ALGEBRA

3. (Closed under scalar multiplication) For any v ∈ W and a ∈ F , we have av ∈ W .

At this juncture, you may want to review how to prove closure of a set under an operation
(Section 1.3.5).

Example 5.3.4. The two extreme examples of subspaces of Fn are, on the one hand, Fn

itself, and on the other hand, the zero subspace {0}.

Example 5.3.5. Let C be the subset of F5
2 discussed in Section 5.1. There, we observered

that C contains 00000 and is closed under addition (bitwise sum mod 2). Since the only
scalars in F2 are 0 and 1, C is also closed under scalar multiplication, so by Definition 5.3.3,
C is actually a a subspace of F5

2.

Before getting to the foundational ideas of span, linear independence, basis, and di-
mension, we have the following definition, which we use in the definition of all of those
ideas.

Definition 5.3.6. Let v1, . . . ,vk be vectors in Fn. An F -linear combination of v1, . . . ,vk,
or when the context is clear, simply a linear combination of v1, . . . ,vk, is a vector of the
form

a1v1 + · · ·+ akvk (5.3.4)

for some scalars ai ∈ F . The scalars ai in the linear combination (5.3.4) are called the
coefficients of that linear combination. If all of the coefficients ai are equal to 0, we call
(5.3.4) a trivial linear combination; otherwise, if at least one of the ai ̸= 0, we call (5.3.4) a
nontrivial linear combination.

As in R3 (see Section 5.2), our main goal is to describe subspaces in terms of a smaller
set of data, as follows.

Definition 5.3.7 (Span). Let v1, . . . ,vk be vectors in Fn. The span of {v1, . . . ,vk} is
defined to be the set of all F -linear combinations of v1, . . . ,vk. In other words,

span {v1, . . . ,vk} = {a1v1 + · · ·+ akvk | ai ∈ F} . (5.3.5)

Conversely, if W is a subspace of Fn, to say that {v1, . . . ,vk} spans W , or that
{v1, . . . ,vk} is a spanning set for W , means that W = span {v1, . . . ,vk}. In other words,
{v1, . . . ,vk} spans W exactly when both of the following conditions hold:

1. Each of the vectors v1, . . . ,vk is contained in W .

2. Every x ∈ W is a linear combination of v1, . . . ,vk.

As a special case, we define the span of the empty set of vectors to be the zero subspace
{0}.

It’s important to note that the span of a subset of Fn actually is a subspace of Fn:

5.3. THE FOUNDATIONS OF LINEAR ALGEBRA 85

Theorem 5.3.8. If v1, . . . ,vk are vectors in Fn, then span {v1, . . . ,vk} is a subspace of
Fn.

Proof. Problem 5.3.2.

Remark 5.3.9. Note that if the vectors v1, . . . ,vk are contained in a subspace W , the
conditionW = span {v1, . . . ,vk} of Definition 5.3.7 boils down to the statement: “If x ∈ W ,
then x = a1v1 + · · ·+ akvk for some ai ∈ F .” So, for example, if you know that {u,v,w}
spans a subspace W , then you know that u, v, and w are in W , and if x ∈ W , then
x = au+ bv + cw for some a, b, c ∈ F .

On the other hand, suppose we only know that u,v,w ∈ W and you then want to
prove that {u,v,w} spans W , given certain assumptions. In that case, your proof should
go something like this:

Assume: (certain assumptions)
Assume: x ∈ W .
(stuff)
Conclusion: x = au+ bv + cw for some a, b, c ∈ F .

Next, as we saw in the last cartoon of Section 5.2, if a spanning set satisfies some kind
of linear relationship, then it doesn’t produce unique “coordinates”. We therefore want
spanning sets to be linearly independent, or more precisely:

Definition 5.3.10 (Linear independence). Let v1, . . . ,vk be vectors in Fn. To say that
{v1, . . . ,vk} is linearly dependent means that some nontrivial linear combination (Defini-
tion 5.3.6) of v1, . . . ,vk is equal to 0. In other words, v1, . . . ,vk is linearly dependent
exactly when

a1v1 + · · ·+ akvk = 0 (5.3.6)

for some choice of coefficients a1, . . . , ak ∈ F , not all of which are 0. A relationship like
(5.3.6) with not all coefficients equal to 0 is called a linear dependency.

Conversely, to say that {v1, . . . ,vk} is linearly independent means that the only way to
get

a1v1 + · · ·+ akvk = 0 (5.3.7)

for coefficients ai ∈ F is if all of the ai = 0 (i.e., a1 = · · · = ak = 0). In other words, to say
that {v1, . . . ,vk} is linearly independent means that if (5.3.7) holds, then we must have all
ai = 0.

Again as a special case, we declare the empty set to be linearly independent.

Remark 5.3.11. While the final, “if-then” version of the definition of linear independence
is not the most natural statement in the world, it works great for proofs. On the one hand,
if you know that {u,v,w} is linearly independent, then given any linear combination of
{u,v,w} that is equal to 0, you automatically know that the coefficients of that linear
combination must all be equal to 0.

On the other hand, if you want to prove that {u,v,w} is linearly independent under
certain assumptions, your proof should go something like this:

86 CHAPTER 5. LINEAR ALGEBRA

Assume: (certain assumptions)

Assume: au+ bv + cw = 0 for some a, b, c ∈ F .

(stuff)

Conclusion: a = 0, b = 0, and c = 0.

Putting the ideas of spanning and linear independence together, we get:

Definition 5.3.12. Let W be a subspace of Fn. A basis for W is a linearly independent
subset {v1, . . . ,vk} of W that also spans W . To say that W has dimension k means that
W has a basis with k vectors in it.

Example 5.3.13. Since we defined the span of the empty set to be the zero subspace, and
we declared the empty set to be linearly independent, the empty set is a basis for the zero
subspace. Since that basis contains no vectors, the zero space has dimension 0 (whew!).

At the other extreme, in Fn, let ei be the vector with its ith entry equal to 1, and all
other entries equal to 0. Then {e1, . . . , en} is a basis for Fn (Problem 5.3.3), which means
that dimFn = n.

Example 5.3.14. Returning to the subspace C discussed in Section 5.1 and Example 5.3.5,
it turns out that the subset {b, c, e} of C is a basis for C. (How could you go about checking
this by brute force, using the fact that there are only finitely many vectors in C and only
finitely many linear combinations of {b, c, e}? Try it!)

As described in Section 5.2 (see especially Figure 5.2.2), one way to understand a basis
for a subspace W is that a fixed choice of basis gives a unique set of F -valued coordinates
for every vector in W . More precisely:

Theorem 5.3.15. Let W be a subspace of Fn, and let {v1, . . . ,vk} be a basis for W . Then
for every w ∈ W , there exists a unique choice of a1, . . . , ak ∈ F such that

w = a1v1 + · · ·+ akvk. (5.3.8)

We call the (unique) a1, . . . , ak in (5.3.8) the coordinates of w with respect to the basis
{v1, . . . ,vk}. If the basis {v1, . . . ,vk} is understood, we just call a1, . . . , ak the coordinates
of w. In these terms, Theorem 5.3.15 says that the vectors in W can be put in one-to-one
correspondence with k-tuples a1, . . . , ak of elements of F . In other words, vectors in W can
be described uniquely by their coordinates a1, . . . , ak. (Compare the discussion at the end
of Section 5.2.)

Proof. Because {v1, . . . ,vk} is a basis for W , {v1, . . . ,vk} spans W , which means that (by
definition!) we can find a1, . . . , ak ∈ F to make (5.3.8) work. Therefore, all we have to
resolve is the uniqueness of a1, . . . , ak.

So suppose that
w = a1v1 + · · ·+ akvk

= a′1v1 + · · ·+ a′kvk

(5.3.9)

5.3. THE FOUNDATIONS OF LINEAR ALGEBRA 87

for a1, . . . , ak, a
′
1, . . . , a

′
k ∈ F . Then

(a1 − a′1)v1 + · · ·+ (ak − a′k)vk = 0. (5.3.10)

However, since {v1, . . . ,vk} is linearly independent, by definition, the only way that (5.3.10)
can happen is if a1 − a′1 = 0, a2 − a′2 = 0, . . . , ak − a′k = 0. In other words, ai = a′i for
each i from 1 to k, which means that the supposedly different coordinates a1, . . . , ak and
a′1, . . . , a

′
k are actually the same. The theorem follows.

coordinates

lin indepspan

linear combinations

basis

dimension

Figure 5.3.1: The foundations of linear algebra

So great, we’ve established the foundations of linear algebra in short order, as shown in
Figure 5.3.1. Except:

Ask Yourself 5.3.16. If you think hard about the definition of dimension, you might have
the following nightmares.

� Is it possible for a subspace W to have one basis with 5 vectors and another basis
with 7 vectors? In other words, is it possible for the dimension of W to be both 5 and
7?

� Is it possible for F 8 to contain a subspace of dimension 10? In other words, is it
possible for a smaller space to have a larger dimension?

� Can we find a subspace of Fn that doesn’t have a basis at all?

Rest assured, none of the scenarios in Ask Yourself 5.3.16 actually occur! But the more
you think about it, the less obvious that is.

Even once we determine that the nightmares never happen, there are also some compu-
tational problems that need to be solved.

Motivating Problem 5.3.17. Given a subspace W of Fn and vectors {v1, . . . ,vk} that
span W , how can we check that {v1, . . . ,vk} is a basis for W?

Motivating Problem 5.3.18. Given a subspace W of Fn, how can we find a basis for W?

In any case, it turns out that the same tool serves both to dispel the nightmares of Ask
Yourself 5.3.16 and also to answer Motivating Problems 5.3.17–5.3.18: computational linear
algebra, to which we turn next (Sections 5.4 and 5.5).

88 CHAPTER 5. LINEAR ALGEBRA

Problems

5.3.1. Let F be a field, and let Fn and 0 be as described in Definition 5.3.1. Prove that
the following properties hold for any vectors v,w,x ∈ Fn and scalars a, b ∈ F .

(a) (v +w) + x = v + (w + x).

(b) v +w = w + v.

(c) v + 0 = v.

(d) There exists some vector (−v) such that v + (−v) = 0.

(e) a(bv) = (ab)v.

(f) 1v = v.

(g) a(v +w) = av + aw.

(h) (a+ b)v = av + bv.

5.3.2. (Proves Theorem 5.3.8) Suppose v1, . . . ,vk are vectors in Fn, and let

W = span {v1, . . . ,vk} = {a1v1 + · · ·+ akvk | ai ∈ F} . (5.3.11)

In other words, a vector x of Fn is in W exactly when

x = a1v1 + · · ·+ akvk (5.3.12)

for some choice of coefficients ai ∈ F .

(a) Explain why 0 is in W . (Suggestion: What ai should you choose to get 0 in (5.3.12)?)

(b) Suppose x and y are in W . Explain why x + y must be in W . (Suggestion: Both x
and y have a form similar to (5.3.12); what does x+ y look like? You may also want
to review Section 1.3.5.)

(c) Suppose x is in W and a ∈ F . Explain why ax must be in W .

5.3.3. Let e1 =

10
0

, e2 =

01
0

, and e3 =

00
1

. Prove that {e1, e2, e3} is a basis for F3
13,

using the following steps.

(a) Prove that if x ∈ F 3, then x is a linear combination of {e1, e2, e3}. (See Remark 5.3.9.)

(b) Prove that {e1, e2, e3} is linearly independent, using the definition of linear indepen-
dence. (See Remark 5.3.11.)

5.3.4. Consider the subset

W =


xy
0

 ∈ F3
17

∣∣∣∣∣∣x, y ∈ F17

 . (5.3.13)

of F3
17. Find a basis B for W , and prove that B is a basis for W , using the following steps.

5.3. THE FOUNDATIONS OF LINEAR ALGEBRA 89

(a) First, guess what B might be, and explain how you know that the vectors of B are in
W . (See Problem 5.3.3 for some ideas of what B might be.)

(b) Prove that if x ∈ W , then x is a linear combination of B. (See Remark 5.3.9.)

(c) Prove that B is linearly independent, using the definition of linear independence. (See
Remark 5.3.11.)

(d) What is the dimension of W? Explain.

5.3.5. Consider the subset

W =





x1
0
0

x4
x5
0
0
0


∈ F8

7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1, x4, x5 ∈ F7


. (5.3.14)

of F8
7. Find a basis B for W , and prove that B is a basis for W , using the following steps.

(a) First, guess what B might be, and explain how you know that the vectors of B are in
W . (See Problem 5.3.3 for some ideas of what B might be.)

(b) Prove that if x ∈ W , then x is a linear combination of B. (See Remark 5.3.9.)

(c) Prove that B is linearly independent, using the definition of linear independence. (See
Remark 5.3.11.)

(d) What is the dimension of W? Explain.

5.3.6. SupposeW is a subspace of Fn, {u,v,w} spansW , and x ∈ W . One of the following
statements is always true:

� {u,v,w,x} spans W .

� {u,v} spans W .

Choose the true statement and prove it.

5.3.7. Suppose {u,v,w} is a linearly independent subset of Fn, and x ∈ W . One of the
following statements is always true:

� {u,v,w,x} is linearly independent.

� {u,v} is linearly independent.

Choose the true statement and prove it.

90 CHAPTER 5. LINEAR ALGEBRA

5.3.8. In F7
5, suppose we have a set of vectors

B =





1
∗
∗
0
∗
∗
0


,



0
∗
∗
0
∗
∗

−2


,



0
∗
∗

−1
∗
∗
0




, (5.3.15)

where each ∗ represents an entry with an unspecified value. Use the definition of linear
independence to prove that B is linearly independent.

5.3.9. In F7
11, suppose we have a set of vectors

B =





3
a
b
∗
∗
∗
∗


,



0
2
c
∗
∗
∗
∗


,



0
0
5
∗
∗
∗
∗




, (5.3.16)

where each ∗ represents an entry with an unspecified value, and a, b, c ∈ F11 are also un-
specified. Use the definition of linear independence to prove that B is linearly independent.

5.3.10. Let W be the subspace of F7
2 defined by

W = span





1
1
1
0
0
0
0


,



0
1
1
0
0
1
1


,



0
1
0
1
1
1
0




. (5.3.17)

(a) What is the dimension d of W? What does d tell you about how many vectors there
are in W?

(b) Write down every element of W .

5.3.11. Let W be the subspace of F7
3 defined by

W = span





1
1

−1
0
1
0
1


,



0
1
1

−1
0

−1
1


,



1
0
1
1
1
1
0




. (5.3.18)

5.4. MATRICES WITH ENTRIES IN A FIELD F 91

(a) How many vectors are there in W? Explain your answer.

(b) What is the dimension d of W? Explain your answer.

5.3.12. Let W be the subspace of F9
2 defined by

W = span





1
1
0
1
0
1
1
0
0


,



0
1
1
0
1
0
1
1
1


,



0
1
0
0
0
1
0
0
1


,



1
0
0
1
0
0
1
0
1




. (5.3.19)

(a) How many vectors are there in W? Explain your answer.

(b) What is the dimension d of W? Explain your answer.

5.4 Matrices with entries in a field F

So yes, as promised at the end of Section 5.3, to understand spanning and linear inde-
pendence and to dispel the nightmares of Ask Yourself 5.3.16, we finally have to do some
calculations. And yes, if you’ve taken linear algebra, this may be the part of it you remem-
ber best! But don’t get too comfortable; we still have to re-examine all of that material
over arbitrary fields.

We start by defining matrices themselves. Throughout this section, let F be a field.

Definition 5.4.1. To say that A is an n × k matrix over F means that A is a box of nk
elements of F , arranged as:

A =

a11 · · · a1k
...

. . .
...

an1 · · · ank

 . (5.4.1)

If we know the size of A, we abbreviate (5.4.1) as A = [aij], which means that aij is the
element in row i and column j.

For n × k matrices A and B over F , and c ∈ F , we define matrix addition and scalar
multiplication by

A+B =

a11 · · · a1k
...

. . .
...

an1 · · · ank

+

b11 · · · b1k
...

. . .
...

bn1 · · · bnk


=

a11 + b11 · · · a1k + b1k
...

. . .
...

an1 + bn1 · · · ank + bnk


(5.4.2)

92 CHAPTER 5. LINEAR ALGEBRA

and

cA = c

a11 · · · a1k
...

. . .
...

an1 · · · ank

 =

ca11 · · · ca1k
...

. . .
...

can1 · · · cank

 . (5.4.3)

In abbreviated form, this becomes

[aij] + [bij] = [aij + bij], (5.4.4)

c[aij] = [caij]. (5.4.5)

We also define a zero matrix to be a matrix whose entries are all equal to 0.

We denote the set of all n × k matrices over F by Mn×k(F), and in the most common
case where n = k, we abbreviate Mn(F) = Mn×n(F). Note that Fn (Definition 5.3.1) is
just the n × 1 case of Mn×k(F), and conversely, we can think of Mn×k(F) as Fnk written
in a different format. In particular, n × 1 matrices are called column vectors, and 1 × k
matrices are called row vectors. If we want to refer to either column or row vectors, but not
specify which, we simply talk about vectors.

The purpose of writing matrices in a box, as opposed to, say, a very long column, is to
define matrix multiplication, which we do in stages as follows.

Definition 5.4.2. If x = [x1 . . . xn] is a 1×n row vector over F and y =

y1...
yn

 is an n×1

column vector over F , we define the row-column product, or dot product, to be

x · y = [x1 . . . xn]

y1...
yn

 = x1y1 + · · ·+ xnyn. (5.4.6)

Note that we can identify F with M1(F), so we can think of the result of the row-column
product (5.4.6) as a 1× 1 matrix.

Definition 5.4.3. Let A = [aij] be an n × k matrix over F , and let x = [xj] be a k × 1
column vector over F . Let ri = [ai1 . . . aik] be the ith row of A. Then we define the
matrix-vector product Ax to be the n× 1 column vector

Ax =

r1...
rn

x =

r1 · x...
rn · x

 . (5.4.7)

In other words, the ith entry of Ax is the dot product ri · x.

5.4. MATRICES WITH ENTRIES IN A FIELD F 93

Example 5.4.4. Taking F = R, let x =

12
3

 and A =


4 5 6
7 8 9
10 11 12
13 14 15

. We have that

Ax =


4 5 6
7 8 9
10 11 12
13 14 15


12
3

 =


1(4) + 2(5) + 3(6)
1(7) + 2(8) + 3(9)

1(10) + 2(11) + 3(12)
1(13) + 2(14) + 3(15)

 . (5.4.8)

Note that this final product can also be written as
1(4) + 2(5) + 3(6)
1(7) + 2(8) + 3(9)

1(10) + 2(11) + 3(12)
1(13) + 2(14) + 3(15)

 = 1


4
7
10
13

+ 2


5
8

11
14

+ 3


6
9
12
15

 . (5.4.9)

Example 5.4.4 leads to a crucial observation.

Remark 5.4.5. For us, perhaps the most important way of looking at matrix-vector mul-
tiplication (Definition 5.4.3) is as follows. If A is a n × k matrix whose k columns are the

n× 1 column vectors v1, . . . ,vk, and x =

x1...
xk

 is a k × 1 column vector, then

Ax = x1v1 + · · ·+ xkvk. (5.4.10)

Comparing (5.4.10) and Defintion 5.3.6, we see that:

Ax is the linear combination of the columns of A with coefficients given by the
entries of x.

We are now ready for the general definition of matrix multiplication.

Definition 5.4.6. Let A be an n × k matrix and let B be a k × s matrix over F . Let
r1, . . . , rn be the n rows of A, each a 1× k row vector, and let b1, . . . ,bs be the s columns
of B, each a k× 1 column vector. We define the matrix product AB to be the n× s matrix

AB = [Ab1 . . . Abs] =

r1 · b1 · · · r1 · bs

...
. . .

...
rn · b1 · · · rn · bs

 . (5.4.11)

Unwrapping Defintitions 5.4.2 and 5.4.3, we see that if A = [aij] and B = [bjℓ], then
AB = [ciℓ] can also be defined by the formula

ciℓ =

k∑
j=1

aijbjℓ. (5.4.12)

94 CHAPTER 5. LINEAR ALGEBRA

While (5.4.11) is probably the best way to remember matrix multiplication in prac-
tice, the formula (5.4.12) is useful for proving the following algebraic properties of matrix
multiplication.

Theorem 5.4.7. We have that

(AB)C = A(BC), a(AB) = (aA)B = A(aB),

A(B + C) = AB +AC, (A+B)C = AC +BC,
(5.4.13)

whenever a ∈ F and A,B,C are matrices of the appropriate size to be multiplied as shown.
In other words, matrix multiplication is associative, associates and commutes with scalar
multiplcation, and is also distributive on both sides.

Proof. This is an application of (5.4.12) and “death by subscript”; see Problems 5.4.1
and 5.4.2.

So now that we’ve finally defined the tool of matrix multiplication, let’s go back and
see how matrix multiplication connects with the foundational ideas of spanning, linear
independence, bases, and dimension. To start this connection, we define yet two more
ideas.

Definition 5.4.8. Let A be an n× k matrix over F . The column space of A, or Col(A), is
defined to be the span of the columns of A (a subspace of Fn); and the nullspace of A, or
Null(A), is a subset of F k defined by

Null(A) =
{
x ∈ F k

∣∣∣Ax = 0
}
. (5.4.14)

Given an n× k matrix A, by Theorem 5.3.8, Col(A) is a subspace of Fn, since it’s the
span of a set of vectors. Nullspaces are also subspaces:

Theorem 5.4.9. Let A be an n× k matrix over F . Then Null(A) (the nullspace of A) is
a subspace of F k.

Proof. Problem 5.4.4.

Also, Remark 5.4.5 now gives us a computationally useful description of linear indepen-
dence. That is, if {v1, . . . ,vk} are the columns of a matrix A:

The set {v1, . . . ,vk} is linearly independent.

⇔ The only linear combination of {v1, . . . ,vk} equal to 0

is when all coefficients are equal to 0.

⇔ The only vector x such that Ax = 0 is x = 0.

⇔ Null(A) = {0} .

In other words:

5.4. MATRICES WITH ENTRIES IN A FIELD F 95

Theorem 5.4.10. Let {v1, . . . ,vk} be a subset of Fn, and let A be the n × k matrix
whose columns are v1, . . . ,vk. Then {v1, . . . ,vk} is linearly independent if and only if
Null(A) = {0}, the zero subspace.

The upshot is that we can now restate our main computational problems (Motivat-
ing Problems 5.3.17–5.8.1) in matrix form, as follows. We begin with the computational
equivalent of Motivating Problem 5.3.17.

Motivating Problem 5.4.11. Given an n×k matrix A over F , determine if Null(A) = {0},
or in other words, determine if the columns {v1, . . . ,vk} of A are linearly independent. Note
that if W = span {v1, . . . ,vk}, this determines if {v1, . . . ,vk} is a basis for W .

Motivating Problem 5.3.18 has two different matrix forms, depending on how W is
initially given to us.

Motivating Problem 5.4.12. Given an n × k matrix A over F , find a basis for the
column space Col(A) (Definition 5.4.8), the span of the columns {v1, . . . ,vk} of A. Note
that this solves the problem of finding a basis for the subspace spanned by a given set
{v1, . . . ,vk} ⊆ Fn.

Motivating Problem 5.4.13. Given an n× k matrix A over F , find a basis for Null(A)
(Definition 5.4.8).

Remarkably, as we’ll see in the next section, Motivating Problems 5.4.11–5.4.13 all have
the same solution: Gaussian reduction.

Problems

5.4.1. (Proves Theorem 5.4.7) proof that matrix multiplication is associative and associates
and commutes with scalar multiplication.

5.4.2. (Proves Theorem 5.4.7) In this problem, assume all matrices are over F .

(a) Suppose A = [aij] is an n × k matrix and B = [bjℓ] and C = [cjℓ] are k × s matrices.
Prove that A(B + C) = AB + AC. (Suggestion: Use (5.4.4) and (5.4.12) to find a
formula for the i, ℓ-entry of each side of A(B + C) = AB + AC. Alternate problem:
Do only the case n = 3, k = 2, s = 4.)

(b) Suppose A = [aij] and B = [bij] are n × k matrices and C = [cjℓ] is a k × s matrix.
Prove that (A + B)C = AC + BC. (Suggestion: Similar to the other part of this
problem. Alternate problem: Do only the case n = 2, k = 4, s = 3.)

5.4.3. Mn(F) is a noncommutative ring.

5.4.4. (Proves Theorem 5.4.9) Let A be a k × n matrix with entries in F , and again, let
Null(A) be the set of all x ∈ Fn such that Ax = 0.

(a) Explain why 0 is in Null(A).

96 CHAPTER 5. LINEAR ALGEBRA

(b) Suppose x and y are in Null(A). Explain why x+y must be in Null(A). (Suggestion:
What does it mean to say that x is in Null(A)? What does it mean to say that x+ y
is in Null(A)? You may also want to review Section 1.3.5.)

(c) Suppose x is in Null(A) and a ∈ F . Explain why ax must be in Null(A).

5.5 Systems of linear equations (homogeneous case)

Again, throughout this section, let F be a field.

Definition 5.5.1. A linear equation is an equation of the form

a1x1 + · · ·+ akxk = b, (5.5.1)

where ai, b ∈ F are constants and the xi are the unknowns. A system of n linear equations
in k variables has the form

a11x1 + · · ·+ a1kxk = b1,

...

an1x1 + · · ·+ ankxk = bn.

(5.5.2)

Note that if

A =

a11 · · · a1k
...

. . .
...

an1 · · · ank

 , x =

x1...
xk

 , b =

b1...
bn

 , (5.5.3)

then (5.5.2) can be rewritten as Ax = b. In this section, and in the great majority of this
book, we are only concerened with the case b = 0, in which we say that the system (5.5.2)
is homogeneous; in other words, a homogeneous system of linear equations is precisely one
of the form Ax = 0. We also define the matrix of the homogeneous linear system Ax = 0
to be A itself.

As you may recall if you’ve taken linear algebra, if a linear system is represented by a
matrix of the following type, then it is particularly easy to solve.

Definition 5.5.2. Let A be a matrix over F . To say that A is in row-echelon form, or
REF, means that:

1. The leftmost entry of each nonzero row of A is 1. (These are called leading 1s.)

2. The leading 1s move strictly to the right as we go down the rows of A. For example,
if the leading 1 is the 3rd entry of row i, then if row i + 1 is nonzero, its leading 1
must be entry j for some j ≥ 4.

3. Any all-0 rows of A must be in its final row(s).

5.5. SYSTEMS OF LINEAR EQUATIONS (HOMOGENEOUS CASE) 97

If A is in REF, we call the columns containing leading 1s the pivot columns of A. Note
that by property 2, if A is in REF, all entries underneath a leading 1 must be 0. If A is in
REF, and in addition, all entries above every leading 1 are 0, we say that A is in reduced
row-echelon form, or RREF.

As promised, we now describe how to write down the solution to a homogeneous system
of linear equations whose matrix is in RREF.

Algorithm 5.5.3. Suppose we have a homogeneous system of linear equations whose ma-
trix A is in RREF, and suppose A is an n× k matrix.

1. Note that the jth column of A corresponds to the variable xj . Call the variables
corresponding to pivot columns of A the pivot variables, and call the other variables
of the system the free variables.

2. Let
{
xj1 , . . . , xjf

}
be the f free variables. Add an equation xjm = xjm for each

free variable xjm ; after eliminating the redundant 0 = 0 equations, we now have n
equations in n variables.

3. Rewrite each of the n equations as xi = (everything else in the equation moved to the
right-hand side). We then see that our solution set is the set of all x of the form

x = xj1α
′
1 + · · ·+ xjfα

′
f , (5.5.4)

where each α′
m is the negative of column jm of A, with a 1 inserted at location jm

and a 0 inserted at every other location in j1, . . . , jf .

I know, that description is so awkward that it’s probably only useful if you already know
what it says! However, some examples should make things clearer.

Example 5.5.4. Consider the system with matrix

A =

1 2 0 0 −3
0 0 1 0 5
0 0 0 1 7

 (5.5.5)

Our free variables are x2 and x5, so adding the corresponding rows x2 = x2 and x5 = x5,
we get

x1 + 2x2 − 3x5 = 0,
x2 = x2,

x3 + 5x5 = 0,
x4 + 7x5 = 0,

x5 = x5.

(5.5.6)

Rearranging to put each equation in the form xi = (stuff), we get

x1 = − 2x2 + 3x5,
x2 = x2,
x3 = − 5x5,
x4 = − 7x5,
x5 = x5.

(5.5.7)

98 CHAPTER 5. LINEAR ALGEBRA

Note all of the sign changes in the equations other than x2 = x2 and x5 = x5. Finally,
rewriting in column vector form, we get

x1
x2
x3
x4
x5

 = x2


−2
1
0
0
0

+ x5


3
0

−5
−7
1

 . (5.5.8)

Note where the 0s and 1s have been inserted, and again note the annoying sign changes we
have to remember (because life is cruel). Also, we haven’t specified the field F over which
this is all happening, but it doesn’t matter — the same calculation works no matter what
F is.

The main feature of Algorithm 5.5.3 is that it gives a basis for Null(A), solving Moti-
vating Problems 5.4.11 and 5.4.13 in the case where A is in RREF. More precisely:

Theorem 5.5.5. In the notation of Algorithm 5.5.3,
{
α′
1, . . . , α

′
f

}
is a basis for Null(A),

with exactly one basis vector for each free variable. In particular, if every column of A is a
pivot column, then Null(A) = 0.

Proof. The notation for this proof in general is both icky and also hides the content of
what’s going on, so the best thing for you to do is to explain what happens in a concrete
specific case; see Problem 5.5.1.

So how can we put a given system of linear equations in RREF? To start, the following
three operations on a system of linear equations, or equivalently, on its matrix A, do not
change its solution set.

Definition 5.5.6. The elementary operations on a system of linear equations, or matrix,
are:

1. Switch equation i and equation j, or equivalently, switch row i and row j of A.

2. For a ∈ F , a ̸= 0, multiply both sides of equation i by a, or equivalently, multiply row
i of A by a.

3. For a ∈ F , add a times equation i to equation j, or equivalently, add a times row i of
A to row j.

Note that the proof that elementary operations do not change the Null(A) is just that
all three operations are reversible, so in each case, the “old” system of equations implies
the “new” one, and vice versa. Crucially, though, we need to use the fact that F is a field
to reverse multiplication of row i by a ̸= 0.

Gauss devised the following algorithm to combine the elementary operations to put any
matrix in RREF.

5.5. SYSTEMS OF LINEAR EQUATIONS (HOMOGENEOUS CASE) 99

Algorithm 5.5.7. Gaussian reduction is the following (recursive) algorithm for putting a
n× k matrix A into REF.

1. If A is the n× k zero matrix, done.

2. Otherwise, swap the rows of A (elementary operation type 1) to get a leftmost nonzero
entry a ̸= 0 in the top row of A.

3. Multiply the top row of A by a−1 to make the leftmost nonzero entry of the top row
equal to 1. (Here, we again rely on the assumption that F is a field.)

4. Add appropriate multiples of the top row of A to the other rows of A to make all
entries underneath the leading 1 of the top row equal to 0.

5. Go back to step 1 and apply Gaussian reduction to the k − 1 rows of A beneath the
top row.

We can then put A into RREF by adding appropriate multiples of each nonzero row to the
rows above it, to make all entries above each leading 1 also equal to 0. We call this final
result RREF(A), the RREF of A.

Remark 5.5.8. It turns out to be true, though certainly it’s far from obvious, that
RREF(A) is unique, justifying our use of “the” in “the RREF of A.” See [?] for a proof of
uniqueness in the case where F = R, which you can turn into a proof in the general case
by replacing R with F throughout.

Again, an example will probably be clearer than the formal description of the algorithm.
As with long division (see Remark 3.4.6), we note that the case in which we are most
interested is when F = F2, but we also include examples and exercises with F = F3 or F5,
so as not to obscure the roles of ± signs and division.

Example 5.5.9. Let F = F5, and keep in mind that mod 5, 3 = −2, 4 = −1, and 2 ·3 = 1.

To put A =

3 1 1 2 3 1
3 3 3 2 0 3
4 4 2 1 1 3

 in RREF, we do the following. First, multiply the new top

row by 3−1 = 2:

→

1 2 2 4 1 2
3 3 3 2 0 3
4 4 2 1 1 3

 (5.5.9)

Then add 2 times row 1 to row 2:

→

1 2 2 4 1 2
0 2 2 0 2 2
4 4 2 1 1 3

 (5.5.10)

And then add row 1 to row 3, to get:

→

1 2 2 4 1 2
0 2 2 0 2 2
0 1 4 0 2 0

 . (5.5.11)

100 CHAPTER 5. LINEAR ALGEBRA

Next, multiply row 2 by 2−1 = 3:

→

1 2 2 4 1 2
0 1 1 0 1 1
0 1 4 0 2 0

 (5.5.12)

Subtract row 2 from row 3:

→

1 2 2 4 1 2
0 1 1 0 1 1
0 0 3 0 1 4

 (5.5.13)

And then multiply row 3 by 3−1 = 2 to get:

→

1 2 2 4 1 2
0 1 1 0 1 1
0 0 1 0 2 3

 . (5.5.14)

This matrix is now in REF, so to put it into RREF, we need to clear the entries above
the leading 1s. We do that by going from right to left and adding/subtracting multiples of
the last row to the ones above it, and then the next-to-last row, and so on. To be precise,
subtract row 3 from row 2 and 2 times row 3 from row 1 to get:

→

1 2 0 4 2 1
0 1 0 0 4 3
0 0 1 0 2 3

 (5.5.15)

And subtract 2 times row 2 from row 1 to get:

→

1 0 0 4 4 0
0 1 0 0 4 3
0 0 1 0 2 3

 . (5.5.16)

This is the RREF of our original matrix A.

Combining Algorithms 5.5.7, 5.5.3, and 5.8.4, we see that we can solve any system of
linear equations over an arbitrary field F , just like we can when F = R; see the problems
for examples. Also, combining Algorithm 5.5.7 and Theorem 5.5.5, we have the following
solution to Motivating Problem 5.4.11.

Corollary 5.5.10. Let A be an n × k matrix over F . The columns of A are linearly
independent if and only if all of the columns of the RREF of A are pivot columns (i.e.,
every column contains a leading 1).

Remark 5.5.11. If you still feel uncomfortable with things like fractions in Fp, you might
be tempted to do all of your row-reduction over F = Q, and then reduce mod p at the end.

5.5. SYSTEMS OF LINEAR EQUATIONS (HOMOGENEOUS CASE) 101

The problem with the approach is that it can produce the wrong answer! To give a toy

example that explains the basic issue, consider A =

[
1 2
2 1

]
. If we reduce A over F3, we get

[
1 2
2 1

]
→
[
1 2
0 −3

]
=

[
1 2
0 0

]
. (5.5.17)

It follows that Null(A) has dimension 1. However, if we reduce A over F = Fp for any other

prime value of p, or over F = Q, we get an RREF of

[
1 0
0 1

]
and a nullspace of dimension 0!

Again, the moral is that when you reduce over Fp, make sure you reduce as you go along,
or you could get the wrong answer.

Looking back at Motivating Problems 5.4.11–5.4.13, we see that:

� Motivating Problem 5.4.11 (determining if a given set is linearly independent) is solved
by Corollary 5.5.10.

� Motivating Problem 5.4.13 (finding a basis for Null(A)) is solved as described in
Theorem 5.5.5.

So the only one left to solve is Motivating Problem 5.4.12, which we address as follows.

Theorem 5.5.12 (Contraction). Let A be an n×k matrix over F . Then the pivot columns
of the original matrix A, or in other words, the columns of A that correspond to pivot
columns of RREF(A), form a basis for Col(A).

Proof. Recall from Algorithm 5.5.3 (or really, Example 5.5.4) that every column of A either
corresponds to a pivot variable or to a free variable in RREF(A). Call the latter type of
column a free column of A. Then by choosing one of the free variables to be equal to 1
and all the others to be 0, we get a linear dependency (Definition 5.3.10) in the columns of
A that expresses the corresponding free column of A as a linear combination of the pivot
columns of A. It follows that the free columns of A don’t add anything to the span of
the pivot columns, which means that we can remove them with changing Col(A); in other
words, the pivot columns of A span Col(A).

On the other hand, a linear combination of the pivot columns of A that is equal to 0
is equal to a linear combination of all of the columns of A with the free variables all set
to 0. However, by Algorithm 5.5.3, if all of the free variables are equal to 0 in Ax = 0,
then x = 0, or in other words, all of the coefficients of the corresponding linear combination
of the columns of A are equal to 0. It follows that the pivot columns of A are linearly
independent, and so they form a basis for Col(A).

Example 5.5.13. Consider the subspace C of F5
2 described in Section 5.1. We can now

solve Motivating Problems 5.1.3 and 5.1.4 from that discussion, assuming some theory we’ll
prove in Section 5.6.

First, we observe that Theorem 5.3.15 implies:

102 CHAPTER 5. LINEAR ALGEBRA

A d-dimensional subspace of Fn
p contains exactly pd vectors.

Therefore, since C has 8 = 23 vectors in it, to find a basis for C, we should look for a
set B of 3 linearly independent vectors in C. Then, once we find such a B, Theorem 5.6.6
(which, again, we haven’t proven yet) will show that B is a basis for C.

We might, for example, try starting with the vectors b = 00111, c = 01011, d = 01100,
and e = 10010, which are the columns of

A =


0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1
1 1 0 0

 . (5.5.18)

Row reduction (details omitted) then shows that RREF(A) =


1 0 1 0
0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

. So, since the

pivot columns of A are 1, 2, and 4, {b, c, e} is a basis for C.

The free/pivot setup of the proof of the Contraction Theorem 5.5.12 also gives a fact
about the dimensions of Col(A) and Null(A) that can be rephrased as a result (Corol-
lary 5.5.15) whose statement is made more succinct by the following definitions.

Definition 5.5.14. Let A be a n × k matrix over a field F . We define rank(A), the rank
of A, to be dim(Col(A)), the dimension of the column space of A, and we define nullity(A),
the nullity of A, to be dim(Null(A)), the dimension of the nullspace of A.

Since each of the n columns of a n × k matrix in RREF is either a pivot column or a
free column, Theorems 5.5.5 and 5.5.12 together imply the following result.

Corollary 5.5.15 (Rank-Nullity Theorem). Let A be a n× k matrix over a field F . Then
rank(A) + nullity(A) = k.

Example 5.5.16. Let

A =

1 2 3 6 0
0 0 1 3 2
4 1 2 1 1

 , (5.5.19)

considered as a matrix over F7. A calculation (which you should do yourself) shows that
RREF(A) is

RREF(A) =

1 2 0 −3 1
0 0 1 3 2
0 0 0 0 0

 . (5.5.20)

5.5. SYSTEMS OF LINEAR EQUATIONS (HOMOGENEOUS CASE) 103

To compute Null(A), we see that the free variables are x2, x4, and x5, and our usual

procedure gives us a basis




−2
1
0
0
0

 ,


3
0

−3
1
0

 ,


−1
0

−2
0
1


 for Null(A); and on the other hand,

the Contraction Theorem 5.5.12 implies that


10
4

 ,

31
2

 (read directly off the original

matrix A) is a basis for Col(A). We see that

rank(A) + nullity(A) = 2 + 3 = 5, (5.5.21)

confirming the Rank-Nullity Theorem 5.5.15.

Of course, all of this computation is only meaningful if dimension is meaningful — if a
subspace can have both dimension 7 and dimension 54, then it’s not really worth computing
the dimension of a subspace! We’ll finally resolve that question in the next section. For
now, to finish this section, in Table 5.5.1, we summarize the solutions to the most common
computational linear algebra problems we will face.

Problem to solve Algorithm

Are columns of A lin-
early independent?

If all columns of RREF(A) are pivot, yes; otherwise, no.

Find basis for Col(A) Use the columns of A corresponding to pivot columns of
RREF(A).

Find basis for Null(A) Solve Ax = 0 using Gaussian reduction and Algorithm 5.5.3.

Table 5.5.1: Solutions to motivating problems in linear algebra

Problems

5.5.1. (Proves Theorem 5.5.5) Let

A =

1 2 0 0 −3 4
0 0 1 0 5 −6
0 0 0 1 7 8

 , (5.5.22)

where the entries of A are in F13.

(a) Write out the equations for Ax = 0.

(b) Find the set of vectors B that Algorithm 5.5.3 gives us as a candidate for a basis for
Null(A). (Don’t assume that B is a basis for Null(A), as the goal of the rest of this
problem is to prove that B is a basis for Null(A).)

104 CHAPTER 5. LINEAR ALGEBRA

(c) Explain why (prove that) every x ∈ Null(A) is a linear combination of the vectors of
B. (See Remark 5.3.9.)

(d) Explain why (prove that) the vectors of B are linearly independent. (See Remark 5.3.11.)

5.5.2. Find the RREFs of the following matrices with entries in F5.

(a)


0 4 1 2 1 4
4 1 4 1 3 2
0 4 3 1 2 4
4 2 1 0 0 2

 (b)


4 2 3 2 4 3
3 3 4 1 0 0
0 1 4 4 2 2
4 3 0 0 3 0
3 0 4 0 3 4



(c)


3 3 0 0 4 3 1
3 2 1 0 0 3 2
0 2 3 3 2 0 4
1 4 2 4 4 4 1
3 0 3 2 2 4 1

 (d)



1 1 3 2 1 1 0 0
1 4 3 3 4 4 2 2
4 4 2 3 3 4 1 1
4 4 4 2 0 3 0 0
2 3 3 0 3 2 3 1
4 4 3 0 0 1 2 2



5.5.3. Find the RREFs of the following matrices with entries in F3.

(a)


1 0 0 1 1 1
0 0 0 0 2 2
1 1 2 2 0 2
2 0 0 1 0 1

 (b)


1 0 0 2 0 2
2 1 2 1 0 0
2 1 2 2 2 2
2 0 0 2 1 2
2 2 1 1 0 1



(c)


0 2 0 2 1 0 1
2 1 0 2 2 2 0
1 2 2 2 2 0 0
1 0 0 2 1 2 0
0 1 1 0 0 0 0

 (d)



1 0 0 1 0 2 1 2
2 2 1 2 0 1 2 2
2 2 1 1 0 0 0 0
0 1 2 1 1 1 2 2
0 1 2 2 2 2 0 0
0 1 2 2 0 2 1 0



5.5. SYSTEMS OF LINEAR EQUATIONS (HOMOGENEOUS CASE) 105

5.5.4. Find the RREFs of the following matrices with entries in F2.

(a)


1 1 0 1 0 1 0
1 1 1 0 1 0 0
1 1 1 1 0 0 1
0 0 0 1 1 0 0
1 1 1 0 1 1 0

 (b)


0 0 0 0 1 1 0 1
0 0 1 1 1 0 1 0
1 1 1 1 0 0 0 0
1 1 1 1 1 0 1 1
1 1 0 0 1 0 0 1



(c)



1 0 0 1 0 0 1 0
0 1 0 0 0 1 1 0
1 1 0 1 1 1 1 1
0 0 0 0 0 1 0 0
1 1 1 1 0 1 0 0
1 1 1 1 0 0 1 1

 (d)



0 1 1 0 0 1 0 0
0 1 0 0 1 0 1 0
1 0 1 1 1 0 0 0
1 1 1 1 0 0 0 0
0 1 0 0 1 0 1 0
0 1 1 0 0 0 0 1
0 0 0 1 1 0 1 0


5.5.5. For each of the following matrices with entries in F5, find bases for Col(A) and
Null(A).

(a) A =

4 4 1 2 0
2 2 4 0 4
4 4 2 2 4

 (b) A =


1 4 2 0 0
2 3 4 0 4
4 1 3 0 3
2 3 3 1 1



(c) A =


2 4 3 1 1 4
4 1 0 4 0 2
0 3 1 0 3 0
1 1 4 0 0 2

 (d) A =


4 3 1 4 2 3
0 0 4 4 0 1
4 3 0 0 4 3
3 1 4 1 2 3


5.5.6. For each of the following matrices A with entries in F3, find bases for Col(A) and
Null(A).

(a) A =

2 1 2 1 1
2 0 1 0 2
2 2 2 2 2

 (b) A =


2 0 1 0 1
0 1 2 0 2
1 2 0 0 0
0 2 1 1 0



(c) A =


1 0 2 0 2 2
1 0 2 2 1 0
0 1 1 1 1 1
0 2 2 0 1 0

 (d) A =


2 0 1 0 0 0
1 1 1 1 1 2
1 2 1 1 1 1
0 2 1 2 1 2
2 0 1 0 0 0


5.5.7. For each of the following matrices A with entries in F2, find bases for Col(A) and

106 CHAPTER 5. LINEAR ALGEBRA

Null(A).

(a) A =


1 1 1 1 0 1
1 0 0 1 1 0
1 1 0 1 0 0
0 0 0 0 1 1

 (b) A =


1 0 0 0 0 1 1
0 0 1 1 1 0 0
1 1 1 0 1 1 0
0 1 0 1 1 0 0



(c) A =


0 0 1 0 1 0 1
1 1 1 1 1 1 0
1 1 0 1 1 0 0
1 1 0 0 0 1 1
0 0 1 0 1 0 1

 (d) A =


1 1 1 0 1 0 0 1
0 0 0 1 0 1 1 1
1 1 0 0 1 1 1 1
0 0 1 0 0 1 0 1
1 1 0 1 0 0 1 1


5.6 Dimension and rank-nullity

To review our story so far, our remaining task in linear algebra is to dispel the three
nightmares of Ask Yourself 5.3.16. We start with an innocent-looking observation that
turns out to be exactly what we need to resolve our nagging theoretical worries.

Lemma 5.6.1. Let A be a n×k matrix with n < k. Then Ax = 0 has at least one nonzero
solution x.

Proof. Since n < k, RREF(A) has at least one free variable, which means that we can set
that variable to 1, obtaining a nonzero solution.

The key to understanding dimension is the following theorem.�

Theorem 5.6.2 (Comparison Theorem). Let W be a subspace of Fn. If {v1, . . . ,vs} spans
W and {w1, . . . ,wℓ} is a linearly independent subset of W , then ℓ ≤ s.

The Comparison Theorem is so important we’ll prove it twice, first in the special case
where F is a field containing finitely many elements, like F = Fp.

Proof of finite field case of Comparison Theorem. Suppose F contains q elements. Since
{w1, . . . ,wℓ} is a linearly independent subset of W , by Problem 5.6.1, W must contain
at least qℓ distinct vectors. On the other hand, since {v1, . . . ,vs} spans W , every vector
w ∈ W has the form

w = a1v1 + · · ·+ asvs (5.6.1)

for some choice of coefficients ai ∈ F . Since there are q possible choices for each of s
coefficients, there are at most qs possible vectors of the form (5.6.1), which means that W
contains at most qs distinct vectors. So if |W | is the number of elements of W , then

qℓ ≤ |W | ≤ qs, (5.6.2)

which means that ℓ ≤ s.
�To give credit where credit is due, I learned the name “Comparison Theorem,” as well as all of the other

theorem names in this section, from Messer [?], my favorite linear algebra textbook.

5.6. DIMENSION AND RANK-NULLITY 107

Proof of Comparison Theorem in general. Suppose {v1, . . . ,vs} spans W , {w1, . . . ,wk} is
a subset ofW , and k > s. Our goal is to show that {w1, . . . ,wk}must be linearly dependent.

Let A be the n×smatrix whose columns are v1, . . . ,vs, and let B the n×k matrix whose
columns are w1, . . . ,wk. Since {v1, . . . ,vs} spans W , every w ∈ W is a linear combination
of v1, . . . ,vs. It follows from Remark 5.4.5 that for 1 ≤ i ≤ k, there exists some ci ∈ F s

such that Aci = wi. Therefore, if we let C be the s×k matrix whose columns are c1, . . . , ck,
we have that

AC = A[c1 · · · ck] = [Ac1 · · · Ack] = [w1 · · · wk] = B. (5.6.3)

However, since s < k, by Lemma 5.6.1, there exists some x ∈ F k such that Cx = 0 and
x ̸= 0. Furthermore,

Bx = ACx = A0 = 0, (5.6.4)

which means, by Theorem 5.4.10, that {w1, . . . ,wk} is linearly dependent.

With Theorem 5.6.2 in hand, getting rid of our first nightmare (two different dimensions
for the same subspace) is a matter of applying the definitions from Section 5.3 and the
Comparison Theorem 5.6.2.

Corollary 5.6.3 (Dimension Theorem). Any two bases for W must have the same size k
(i.e., W cannot have more than one dimension).

Proof. Problem 5.6.2.

Corollary 5.6.4. If dimW = k, any linearly independent set must have size ≤ k and any
span set must have size ≥ k.

Proof. Problem 5.6.3.

It remains to dispel the other nightmares of Ask Yourself 5.3.16: the possibility that
a subspace of W might have a larger dimension than W and the possibility that some
subspace of Fn might not have a basis at all. The following idea turns out to be enough to
slay those monsters.

Definition 5.6.5. Let W be a subspace of Fn. A maximal linearly independent subset of W
is a linearly independent subset {v1, . . . ,vk} of W such that for any x ∈ W , {v1, . . . ,vk,x}
is linearly dependent (not linearly independent).

Theorem 5.6.6. Let W be a subspace of Fn, and suppose {v1, . . . ,vk} is a maxmimal
linearly independent subset of W . Then {v1, . . . ,vk} is a basis for W .

Proof. Since {v1, . . . ,vk} is linearly independent, by the definition of basis, it suffices to
show that {v1, . . . ,vk} spans W ; that is, we want to show that for any x ∈ W , x is a linear
combination of {v1, . . . ,vk}.

108 CHAPTER 5. LINEAR ALGEBRA

So suppose x is a vector in W . Since {v1, . . . ,vk} is a maximal linearly independent sub-
set of W {v1, . . . ,vk,x} is linearly dependent. In other words, there must exist coefficients
a1, . . . , ak, b ∈ F , not all equal to 0, such that

a1v1 + · · ·+ akvk + bx = 0. (5.6.5)

Now, if b = 0, then

a1v1 + · · ·+ akvk = 0 (5.6.6)

with not all of the ai equal to 0, contradicting our assumption that {v1, . . . ,vk} is linearly
independent. It follows that b ̸= 0, and therefore,

x = −a1
b
v1 − · · · − ak

b
vk. (5.6.7)

The theorem follows.

We can now start to get rid of the remaining nightmares.

Corollary 5.6.7. If W is a subspace of Fn, then W has a basis.

Proof. We can construct a basis B for W , at least in the abstract, as follows. Start with
B = ∅.

1. If we can find some v1 ∈ W such that B ∪ {v1} = {v1} is linearly independent, then
let B = {v1} and go on to step 2. Otherwise, B is maximal linearly independent.

2. If we can find some v2 ∈ W such that B∪{v2} = {v1,v2} is linearly independent, then
let B = {v1,v2} and go on to step 3. Otherwise, B is maximal linearly independent.

3. (And so on.)

But remember, Corollary 5.6.4 says that since W is a subspace of Fn, which has di-
mension n, you can’t find a linearly independent subset of W with more than n vectors in
it! That means that the above process must stop at Step k for some k ≤ n. When that
happens, B is a maximal linearly independent subset of W , and by Theorem 5.6.6, B must
then be a basis for W . The corollary follows.

Finally, now that we know that every subspace has a basis, we can apply the Comparison
Theorem 5.6.2 again to get the following result.

Corollary 5.6.8 (Subspace Size Theorem). If W is a subspace of a subspace V of Fn, then
dimW ≤ dimV ≤ n. In particular, any subspace of Fn has dimension at most n.

Proof. Problem 5.6.4.

5.6. DIMENSION AND RANK-NULLITY 109

Problems

5.6.1. (Proves Theorem 5.6.2) Suppose F is a field with q elements, let W be a subspace
of Fn, and let {v1, . . . ,vk} be a linearly independent subset of W .

(a) Suppose a1, . . . , ak, b1, . . . , bk ∈ F and

a1v1 + · · ·+ akvk = b1v1 + · · ·+ bkvk. (5.6.8)

Prove that ai = bi for all i such that 1 ≤ i ≤ k. (Suggestion: Use the definition of
linear independence.)

(b) Explain why part (a) implies that span {v1, . . . ,vk} (which is a subset of W) contains
exactly qk vectors.

5.6.2. (Proves Corollary 5.6.3) Let W be a subspace of Fn, and suppose that {v1, . . . ,vk}
and {u1, . . . ,uℓ} are both bases for W . Prove that k = ℓ. (Suggestion: Theorem 5.6.2.)

5.6.3. (Proves Corollary 5.6.4) Let W be a subspace of Fn such that dimW = k.

(a) Suppose {v1, . . . ,vℓ} is a linearly independent subset of W . Prove that ℓ ≤ k.

(b) Suppose {u1, . . . ,us} spans W . Prove that s ≥ k.

(Suggestion: Theorem 5.6.2.)

5.6.4. (Proves Corollary 5.6.8) Suppose W and V are subspaces of Fn with W ⊆ V .

(a) Prove that dimW ≤ dimV . (Suggestion: Start with bases for W and V .)

(b) Prove that dimV ≤ n.

Problems 5.6.5 and 5.6.6 both take a look back at the motivating situation discussed in
Section 5.1, which, as we saw in Example 5.3.5, is really about a subspace C of F5

2.

5.6.5. Let C be the subspace defined in Section 5.1.

(a) What is the dimension of C? Explain your answer.

(b) How can we express the idea of a minimal recovery set (as defined in Section 5.1) in
terms of the theory we have developed since then?

(c) Answer Motivating Problem 5.1.1: What are the possible sizes of a minimal recovery
set?

(d) Answer Motivating Problems 5.1.3 and 5.1.4: What’s an efficient way to test a given
set of bitstrings B to see if you can recover C from B?

(e) Answer Motivating Problem 5.1.5: Is every minimal recovery set the same size? Ex-
plain.

110 CHAPTER 5. LINEAR ALGEBRA

5.6.6. This problem answers Motivating Problem 5.1.6 by finding a formula counting the
number of bases of a k-dimensional subspace W of Fn

p .

The rest of the problems in this section (Problems 5.6.7–5.6.9) establish some other foun-
dational results in the theory of linear algebra. They aren’t strictly necessary for the rest
of this book, but they’re certainly pretty interesting!

5.6.7. (Proves Theorem 5.6.9) The goal of this problem is to prove the following result,
the catchy statement of which is due to Shahriar Shahriari [citation?].

Theorem 5.6.9 (Two Out of Three Theorem). Suppose W is a subspace of Fn with
dimW = k, and let S be a finite set of vectors in W . Suppose two of the following statements
hold:

1. S spans W .

2. S is linearly independent.

3. S contains k vectors.

Then the third statement must hold as well.

So suppose W is a subspace of Fn with dimW = k, and let S be a finite set of vectors in
W .

(a) Prove that if S spans W and is linearly independent, then S contains k vectors.

(b) Prove that if S spans W and contains k vectors, then S is linearly independent.

(c) Prove that if S is linearly independent and contains k vectors, then S spans W .

5.6.8. (Proves Theorem 5.6.10) The goal of this problem is to prove the following result.

Theorem 5.6.10 (Expansion Theorem). Given

5.6.9. (Proves Theorem 5.6.11) The goal of this problem is to prove the following result.

Theorem 5.6.11 (Minimal spanning set). Let B be

5.7 Row spaces and subspaces as nullspaces

Some theory used in passing later on. Enough to know that Theorem 5.7.4 is true and
Corollary 5.7.5 is true.

Definition 5.7.1. Matrix transpose

Definition 5.7.2. row spaces

Theorem 5.7.3. Row(A) is invariant under row operations

Theorem 5.7.4. Every subspace W of Fn with dimW = k is equal to Null(A) for some
n× (n− k) matrix A.

Corollary 5.7.5. Row rank equals column rank. In particular, if A is a square matrix,
then the rows of A are linearly independent if and only if the columns of A are linearly
independent.

5.8. SYSTEMS OF LINEAR EQUATIONS (INHOMOGENEOUS CASE) 111

Problems

5.7.1. W⊥ is a subspace

5.7.2. dimW + dimW⊥ = n

5.7.3. Prove: every subspace is a nullspace

5.8 Systems of linear equations (inhomogeneous case)

[This is currently just a holding pen for various scraps cut from other sections and needs to
be organized into something coherent.]

scrap:

Motivating Problem 5.8.1. Given a basis {v1, . . . ,vk} for a subspace W of Fn, and a
vector v in Fn, how can we determine if v is in W?

scrap: Similarly, comparing Remark 5.4.5 and the defintion of span (Definition 5.3.7),
we have the following computational description of the span of a subset of Fm.

Theorem 5.8.2. Let {v1, . . . ,vk} be a subset of Fn, and let A be the n× k matrix whose
columns are v1, . . . ,vk. Then b ∈ Fn is contained in span {v1, . . . ,vk} if and only if the
matrix equation Ax = b has a solution.

scrap: Finally, considering Remark 5.4.5, we see that Motivating Problem 5.8.1 has the
following matrix formulation.

Motivating Problem 5.8.3. Given an n×k matrix A over F and an n×1 column vector b,
determine if Ax = b has a solution.

Note that if

A =

a11 · · · a1k
...

. . .
...

an1 · · · ank

 , x =

x1...
xk

 , b =

b1...
bn

 , (5.8.1)

then (5.5.2) can be rewritten as Ax = b, and we call [A|b] the augmented matrix of the linear
system Ax = b. (Note that the | in the middle of [A|b] separates the matrix of coefficients
A from the column vector of constants b.) In those terms, we define the solution space of

(5.5.2) to be the set of all x =

x1...
xk

 ∈ F k such that all equations in (5.5.2) hold.

The non-homogeneous case is slightly more complicated.

Algorithm 5.8.4. Suppose we have a homogeneous system of linear equations whose aug-
mented matrix [A|b] is in RREF, and suppose A is an n×k matrix and b is an n×1 column
vector.

112 CHAPTER 5. LINEAR ALGEBRA

1. Note that the jth column of A corresponds to the variable xj . Call the variables
corresponding to pivot columns of A the pivot variables, and call the other variables
of the system the free variables.

2. If column k + 1, the column of constants, is a pivot variable, then the bottommost
nonzero translates to the equation 0 = 1. In that case, the system has no solutions
(empty solution set).

3. Otherwise, let
{
xj1 , . . . , xjf

}
be the f free variables. Add an equation xjm = xjm for

each free variable xjm ; after eliminating the redundant 0 = 0 equations, we now have
n equations in n variables.

4. Rewrite each of the n equations as xi = (everything else in the equation moved to the
right-hand side). We then see that our solution set is the set of all x of the form

x = b′ + xj1α
′
1 + · · ·+ xjfα

′
f , (5.8.2)

where each α′
m is the negative of column jm of A, with a 1 inserted at location jm

and a 0 inserted at every other location in j1, . . . , jf ; and b′ is b, with a 0 inserted at
every location j1, . . . , jf .

Example 5.8.5. Similarly, consider the system with matrix

A =

1 2 0 0 −3 2
0 0 1 0 5 −1
0 0 0 1 7 3

 (5.8.3)

Again, adding x2 = x2 and x5 = x5, we get

x1 + 2x2 − 3x5 = 2,
x2 = x2,

x3 + 5x5 = −1,
x4 + 7x5 = 3,

x5 = x5.

(5.8.4)

Rearranging and rewriting in column vector form, we get
x1
x2
x3
x4
x5

 =


2
0

−1
3
0

+ x2


−2
1
0
0
0

+ x5


3
0

−5
−7
1

 . (5.8.5)

Note that as promised, the column vector


2
0

−1
3
0

 is the column vector

 2
−1
3

 with 0 inserted

in coordinates 2 and 5 (the coordinates of the free variables).

5.9. APPLIED AND INDUSTRIAL TOPOLOGY 113

scrap: Motivating Problem 5.8.3 is solved by determining if Ax = b has a solution, by
applying Gaussian Reduction and Algorithm 5.8.4.

We also note that Algorithm 5.8.4 solves Motivating Problem 5.8.3. In fact, we only
need to check whether there are any rows of the form 0 = 1; if yes, then the answer to the
membership problem is no, and if no, then the answer is yes.

Problems

5.8.1. Consider the system of linear equations given by the augmented matrix

[A|b] =


7 2 5 4 4 4
7 1 2 2 2 4
5 4 3 2 2 2
4 1 2 6 3 1
2 7 7 5 6 7

 . (5.8.6)

(a) Find the solution set for Ax = b, taking entries to be in the field F2.

(b) Same, but in the field F3.

(c) Same, but in the field F5.

(d) Same, but in the field F7.

5.8.2. Consider the system of linear equations given by the augmented matrix

[A|b] =


7 2 5 4 4 4 3
7 1 2 2 2 4 0
5 4 3 2 2 2 1
4 1 2 6 3 2 1
2 7 7 5 6 7 2

 . (5.8.7)

(a) Find the solution set for Ax = b, taking entries to be in the field F2.

(b) Same, but in the field F3.

(c) Same, but in the field F5.

(d) Same, but in the field F7.

5.9 Applied and industrial topology

(to be filled in later; see Ghrist.)
While the focus of this chapter is mainly on theory, I can’t resist sneaking in the following

real-life question (adapted from de Silva and Ghrist [citation?]).
Suppose we have a network of cell phone booster towers, each of which covers a certain

radius, as shown in Figure 5.9.1. As you can see, if you increase the radius covered by each
tower, more ground will be covered, but it seems like the tower locations have been chosen
in a way that there’s a hole in coverage that persists even as we increase the coverage radius
for each tower quite a bit.

114 CHAPTER 5. LINEAR ALGEBRA

Figure 5.9.1: Cell phone coverage as tower coverage radius changes

Motivating Problem 5.9.1. There is a coverage hole in Figure 5.9.1 that seems to persist
for many sizes of tower coverage radius. Is there a way to detect that hole algorithmi-
cally/automatically?

Full disclosure: The algorithm used to solve Motivating Problem 5.9.1 comes from math
that is far deeper than what we discuss in this chapter. What we can describe in this chapter
is how to make the underlying calculations of that algorithm faster and more accurate.

First, however, it’s time for some cartoons.

Chapter 6

Cheaper: Error-correcting codes

Two weekends in a row I came in and found that all my stuff had been dumped
and nothing was done. . . . And so I said, “Damn it, if the machine can detect
an error, why can’t it locate the position of the error and correct it?”

—RichardW. Hamming, as quoted in From Error-Correcting Codes Through
Sphere Packings to Simple Groups, Thomas M. Thompson

6.1 The idea of an error-correcting code

Let’s start by stating the main problem that error-correcting codes solve in terms that you
may not know; then we’ll gradually fill in the meaning of those terms.

Motivating Problem 6.1.1. Suppose we are transmitting a message over a noisy channel.
Is there some way that we can detect, or better yet, correct errors that occur in transmission?

letter ’a’

(ASCII 097)

letter ’a’

(ASCII 097)01100001

transmit receive

01100001

Figure 6.1.1: Successfully sending the message ‘a’

By the term message in Motivating Problem 6.1.1, we just mean a finite sequence, or
string, of letters. More conveniently, we can encode letters as numbers by some agreed-
upon scheme; for example, the ASCII code for the lower-case letter ‘a’ is 97; for a more
complicated example, the Unicode for the “slightly smiling face” emoji, as of this writing in
2019, is U+1F642 (using hexadecimal digits). In fact, by writing those numbers in binary
(e.g., for ‘a’, 01100001), we can think of any message we want to send as a string of binary
digits (0’s and 1’s), or bits, break those bitstrings into blocks of some fixed length n, and
look at what happens one block at a time. See Figure 6.1.1 for a picture of what happens
in a successful transmission of ‘a’.

Next, the term noisy channel in Motivating Problem 6.1.1 refers to any means of com-
munication that might change some of the 0’s in a bitstring to 1’s, and vice versa. In other

115

116 CHAPTER 6. CHEAPER: ERROR-CORRECTING CODES

letter ’e’letter ’a’

(ASCII 097) 01100001

transmit error receive

01100101 (ASCII 101)

Figure 6.1.2: Sending ‘a’, receiving ‘e’

words, an error in the transmission of a block of n bits is a sent 0 that is received as a 1,
or vice versa. For example, Figure 6.1.2 shows how if one particular bit is flipped from a 0
to a 1, a transmitted message of ‘a’ (ASCII 97) becomes a received message of ‘e’ (ASCII
101).

We can therefore restate Motivating Problem 6.1.1 in the following much more specific
form.

Motivating Problem 6.1.2. Suppose we are transmitting a bitstring of length n and one
or more errors occurs in transmission. Is there some way that we can detect that an error
or errors has occurred? Better yet, is there some way that we can correct an error or errors?

In the terms of Motivating Problem 6.1.2, the basic idea of error-correcting codes is that
we can detect, or even correct, transmission errors by having both sender and receiver agree
ahead of time that only certain bitstrings of length n are valid messages, or codewords. The
reason for choosing only certain bitstrings to be codewords is that if a non-codeword is
received in transmission, the receiver will know that something has gone wrong. Moreover,
if we choose our code very carefully, the receiver may actually be able to figure out which
codeword the sender most likely intended.

For example, suppose we have n data bits x1, . . . , xn to transmit. We can add a parity
check bit

x0 = x1 + · · ·+ xn (mod 2) (6.1.1)

to our message, and transmit the bitstring (x0, x1, . . . , xn). (Note that the (mod 2) here
indicates that we are computing in F2.) In other words, the codewords in the parity check
code of length n + 1 are all bitstrings (x0, x1, . . . , xn) such that (6.1.1) holds, or in other
words, such that

x0 + x1 + · · ·+ xn = 0 (6.1.2)

in F2. (Remember, in F2, + = −.)

Now, suppose sender and receiver agree ahead of time to use the parity check code of
length n+ 1, and in transmission, bit xn is flipped from 0 to 1, or 1 to 0. Since 1 + 1 = 0
in F2, we can model this one-bit error by adding 1 to xn in F2; that is, the receiver will
receive the bitstring (x0, x1, . . . , xn + 1). However, if the receiver then sums this bitstring,
they get

x0 + x1 + · · ·+ xn−1 + (xn + 1) = 1, (6.1.3)

and comparing (6.1.2), the receiver will then know that an error has occurred. Note,
however, that the receiver will not know which bit has been flipped, because flipping any
bit xi (including x0) has the same effect on the sum as flipping xn. Note also that if two

6.2. BINARY LINEAR CODES 117

errors occur in transmission, everything will appear to be fine; more generally, any odd
number of errors can be detected, and any even number of errors cannot be. All errors look
the same, however, so Hamming’s question remains: Can we do something more clever and
correct an error that occurs?

In this chapter and in Chapter 8, we’ll study efficient methods for transmitting bitstrings
with error correction (e.g., in Section 6.3). However, just as the value of the Euclidean
Algorithm becomes clearer when you compare its peformance to a naive algorithm for
computing GCDs, it will help to set a benchmark for error correction coming from the
following scheme.

Naive Algorithm 6.1.3. Suppose we want to transmit a single bit x ∈ F2. In the repetition
code of length 3, we simply repeat our data bit 3 times. (I said this would be inefficient!)
In other words, to send the message bit 0, we transmit the bitstring 000, and to send the
message bit 1, we transmit 111. And indeed, this code corrects one error: If we transmit
000 and the receiver receives (say) 010, as long as no more than one error has occurred, the
receiver can conclude that the original message was 000. (This procedure, of assuming that
the bit that shows up more often is the intended message bit, is known as majority logic
decoding.)

So the question arises, can we do better than the repetition code? That is:

Motivating Problem 6.1.4. Can we transmit bitstrings in blocks of some length n, with
one error-correction per block, at a cost of less than 3 transmitted bits per 1 message bit?

Motivating Problem 6.1.4 also explains the title of this chapter: The point is not just
that we can do error-correction in communication, but that, as we’ll see by the end of this
chapter, we can do it using fewer transmitted bits per message bit, i.e., cheaper.

Problems

6.1.1. This problem refers to variations of the repetition code.

(a) Suppose that, instead of repeating our one message bit 3 times, we repeat it 5 times,
and decode using majority logic. Then how many errors can we correct?

(b) Suppose we repeat our one message bit 6 times. How many errors can we detect? In
other words, if we transmit (say) 000000, what is the largest number of errors that
can occur such that the receiver knows that our intended message is more likely, or at
least equally likely, to be 0 than 1? Similarly, how many errors can we correct?

(c) Generalize the above to the repetition code where we repeat n times.

6.2 Binary linear codes

So remember all of that linear algebra stuff from Chapter 5? Let’s use that to restate the
basic ideas of Section 6.1, but in abstract terms.

118 CHAPTER 6. CHEAPER: ERROR-CORRECTING CODES

Definition 6.2.1. We define a bit to be an element of F2, and we define a bitstring of
length n to be an element of Fn

2 .

Remember that in the previous section, we described a code of length n as a choice of
possible correctly transmitted bitstrings of length n? Well, to be precise:

Definition 6.2.2. A code is a subset C of Fn
2 . Elements (vectors) of a code are called code-

words, and again, we think of codewords as the words that are possible correctly transmitted
messages.

Note that codes in general (Definition 6.2.2) need not be particularly algebraic at all.
However, since this is an algebra book, we’ll focus on the following large and important
class of codes.

Definition 6.2.3. A binary linear code C of length n is a subspace C of Fn
2 .

In other words, a binary linear code is a way to declare that only certain bitstrings
of length n are valid codewords, with the valid codewords forming a subspace C of Fn

2 .
Consequently, for the rest of this chapter, we assume, without having to restate it, that all
linear algebra (matrices, vectors, etc.) is over F2 and all arithmetic occurs in F2.

To discuss how, and how well, binary linear codes work, it helps to have the following
standard framework.

Intended msg errors

m

encode decode

x

Transmit Receive
y

Read msg
m’

Figure 6.2.1: Standard framework for discussing error-correcting codes

Definition 6.2.4 (Standard framework). When we discuss a binary linear code in opera-
tion, we use the following standard framework, illustrated in Figure 6.2.1.

Suppose a sender, named Xavier, wants to send bitstrings, broken up into blocks, to a
receiver, named Yolanda, using the binary linear code C. To establish common terminology
and notation, here’s what happens next.

1. We denote the message bitstring that Xavier wants to send by m.

2. Xavier maps the message m to some codeword x ∈ C, a process known as encoding.
In other words, x is a function of m. This could be done, for example, by letting
x = Gm for some matrix G, though other schemes are sometimes more natural or
useful.

3. Xavier transmits x over the communications channel, and Yolanda receives y. If no
errors have occured in transmission, y = x, but if errors have occurred, then y ̸= x.

4. Yoland interprets the received transmission y as a received message m′, a process
known as decoding. A communication is successful exactly when m′ = m. Note that
decoding can sometimes be broken down into two steps:

6.2. BINARY LINEAR CODES 119

(a) First, Yolanda corrects y to a valid codeword y′ ∈ C, using methods that are
more often a matter of cleverness, and not just algebra.

(b) Yolanda then reads y′ as a message m′, possibly by letting m′ = G′y′.

In the terms of the standard framework, we can model transmission errors in the follow-
ing linear-algebraic manner. Let ei be the vector in Fn

2 whose ith coordinate is 1 and whose
other coordinates are all 0. In that notation, if exactly one error happens in transmission,
flipping bit i, then

y = x+ ei. (6.2.1)

(Remember: Adding 1 (mod 2) flips 0 to 1 and 1 to 0.) Similarly, if errors happen in bits i
and j, we have

y = x+ ei + ej . (6.2.2)

We next look at specific examples of binary linear codes. We usually define a binary
linear code C in one of the following two ways.

Definition 6.2.5. Let G be an n×k matrix over F2. To say that G is the generator matrix
of a binary linear code C of length n means that C = Col(G). In other words, generator
matrices define codes as column spaces.

Definition 6.2.6. Let H be a k × n matrix over F2. (Note that the k and and the n are
swapped, compared to the dimensions in Definition 6.2.5.) To say that H is the parity check
matrix of a binary linear code C of length n means that C = Null(H). In other words, parity
check matrices define codes as nullspaces.

By the definition of nullspace (Definition 5.4.8), if H is the parity check matrix of a
code C of length n, then x ∈ Fn

2 is a codeword exactly when Hx = 0. It follows that, for a
non-codeword x, the vector Hx ̸= 0 describes why x is not a codeword, so it helps to give
that vector a name.

Definition 6.2.7. Let H be a parity check matrix for a code C of length n. For x ∈ Fn
2 ,

we define Hx to be the syndrome of x. Again, codewords in C are precisely the vectors x
with syndrome equal to 0.

Returning to the two examples of families of codes given in Section 6.1, it turns out
that one example is conveniently defined using a parity check matrix, and the other is
conveniently defined using a generator matrix.

Example 6.2.8 (Parity check code). The parity check code of length n+1 is defined to be
the nullspace C of the 1 × (n + 1) matrix H = [1 . . . 1]. In other words, x ∈ Fn+1

2 is in C
exactly when Hx = 0 (a 1× 1 matrix!). Problem 6.2.1 gives an equivalent description of C
in terms of a generator matrix.

To send the message bitstring m =

x1...
xn

, Xavier adds the parity check bit

x0 = x1 + · · ·+ xn (6.2.3)

120 CHAPTER 6. CHEAPER: ERROR-CORRECTING CODES

and transmits x =


x0
x1
...
xn

. When Yolanda receives y, she can check the validity of y by

calculating Hy. If y = x, then Hy = Hx = 0, but if bit i has been flipped, or in other
words, y = x+ ei, then

Hy = Hx+Hei = 0 + 1 = 1. (6.2.4)

Unfortunately, since the same error message is produced no matter which bit is flipped,
Yolanda cannot tell which bit has been flipped, and she can only ask Xavier to resend.
More generally, any odd number of errors can be detected, but not corrected, and any even
number of errors will not be detected. (See Problem 6.2.2.)

Example 6.2.9 (Repetition code). Let n be an integer. The repetition code of length n is
defined to be the span C of the (single) column of the n× 1 generator matrix

G =

1...
1

 . (6.2.5)

Since the only possible linear combinations of {G} are G itself and the zero vector, C =
{0, G}. Problem 6.2.3 gives an equivalent description of C in terms of a parity check matrix.

To send the message bit m ∈ F2, Xavier transmits the vector mG; that is, if m = 1,
Xavier transmits x = G, and if m = 0, Xavier transmits x = 0. When Yolanda receives
y, she can check the validity of y by check if all of its bits are equal. If not all of the bits
of y are equal, then Yolanda can correct y to y′ by the majority logic method of choosing
whichever of 0 or 1 occurs more often. If n = 2m + 1 is odd, she may thereby correct up
to m errors, and if n = 2m is even, she can correct up to m− 1 errors and detect, but not
correct, m errors; see Problem 6.1.1.

Problems

6.2.1. Let C be the nullspace of the 1× 9 matrix

H = [1 . . . 1]. (6.2.6)

In other words, let C be the parity check code of length 9 (8 data bits, 1 parity check bit).

(a) Use our standard methods to find a basis B for C.
(b) What is the dimension of C? In general, what will the dimension of the parity check

code of length n be?

(c) Let G be the matrix whose columns are the vectors in the basis B from part (a). For
a given message bitstring m, explain why the encoding procedure of Example 6.2.8 is
equivalent to transmitting x = Gm.

6.3. THE HAMMING 7- AND 8-CODES 121

6.2.2. Let C be the parity check code of length 9, i.e., the nullspace of the 1× 9 matrix

H = [1 . . . 1]. (6.2.7)

Use linear algebra to explain why, when you use C, any odd number of errors will be detected,
but any even number of errors will not be detected. (Suggestion: How can you express the
received message y in terms of the transmitted message x?)

6.2.3. Let C be the repetition code of length 5 (Example 6.2.9).

(a) What is the dimension of C? Explain your answer.

(b) Let C′ be the code of length 5 consisting of all x =

x1...
x5

 such that x1 = x2 (i.e., the

first two coordinates of x are the same). Find a parity check matrix H1,2 (so named
because it should contain the conditions that set x1 = x2) for C′. (Suggestion: What
system of linear equations defines C′?)

(c) Now suppose H is a k×n parity check matrix for C (still the repetition code of length
5). What is the value of n? What is the smallest possible value of k? (Suggestion:
Rank-nullity.)

(d) Find a parity check matrix for C of smallest possible size, as found in part (c).

6.3 The Hamming 7- and 8-codes

As described in the epigraph of this chapter, legend has it that Hamming invented error-
correcting codes out of frustration with being able to detect errors automatically (by a parity
check code). After quite a bit of experimention (see Thompson [?] for an entertaining and
enlightening account), here’s what Hamming eventually devised to solve his problem.

Definition 6.3.1. The Hamming 7-code H7 can be defined in one of two ways:

� H7 is the nullspace of the parity check matrix

H7 =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 . (6.3.1)

� H7 is the column space of the generator matrix

G7 =



1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1


. (6.3.2)

122 CHAPTER 6. CHEAPER: ERROR-CORRECTING CODES

Note that the parity check matrix H7 has the very useful property that the ith column
of H7 is precisely the binary digits of the number i, written upside down (i.e., the top digit
is the 1’s digit, then the 2’s, then the 4’s), which just happens to imply that H7 is in RREF.
Applying our usual methods shows that that the columns of the generator matrix G7 are a
basis for Null(H7). (For a related phenomenon, see Problem 6.3.1.)

Following our standard framework (Definition 6.2.4), here’s how the Hamming 7-code
is used in practice.

Algorithm 6.3.2. Suppose Xavier wants to send a message bitstring m ∈ F4
2 to Yolanda.

1. Xavier encodes m by taking x = G7m. That is, bits x3, x5, x6, and x7 are precisely
the contents of m, and, reading (6.3.1) as a system of linear equations, the other bits
x1, x2, and x4 satisfy

x1 = x3 + x5 + x7

x2 = x3 + x6 + x7

x4 = x5 + x6 + x7.

(6.3.3)

2. Xavier transmits x and Yolanda receives y.

3. Yolanda then decodes y, using the following procedure.

(a) First, Yolanda corrects y to a codeword y′ as follows. Let s = H7y ∈ F3
2 be

the syndrome of y (Definition 6.2.7). If s = 0, then y is a codeword of H7, so
Yolanda chooses y′ = y (the most reasonable assumption). Otherwise, Yolanda
reads s as the binary digits of a number i, assumes that a transmission error has
occurred in bit i, and chooses y′ to be y with its ith bit flipped (i.e., y′ = y+ei).

(b) To finish, Yolanda reads the message m′ off of bits 3, 5, 6, and 7 of y′.

Example 6.3.3. Suppose Xavier wants to send the message m =


0
1
0
1

. Using matrix

multiplication or (6.3.3), he calculates

x = G7m =



0
1
0
0
1
0
1


(6.3.4)

6.3. THE HAMMING 7- AND 8-CODES 123

(check this yourself) and transmits x. If a transmission error now occurs in, for example,
bit 3, Yolanda then receives

y = x+ e3 =



0
1
1
0
1
0
1


. (6.3.5)

In the correction stage, Yolanda calculates

H7y =

11
0

 , (6.3.6)

which she interprets as i = 1(20) + 1(21) + 0(22) = 3. She therefore chooses y′ =



0
1
0
0
1
0
1


(i.e.,

y with its 3rd bit changed) and reads the message m′ =


0
1
0
1

 from bits 3, 5, 6, and 7 of y′.

The remarkable feature of the Hamming 7-code is that Example 6.3.3 is no accident: Any
single transmission error can be corrected. To be precise, we have the following theorem.

Theorem 6.3.4. In our standard framework (Definition 6.2.4), if y = x+ei (i.e., a single
transmission error occurs, in bit i), then the syndrome s = H7y is precisely the binary digits
of i. Consequently, any single transmission error can be corrected (by flipping the ith bit
back).

Proof. Since x ∈ H7 = Null(H7), H7x = 0. Therefore,

s = H7y = H7(x+ ei) = H7x+H7ei = 0+H7ei = H7ei, (6.3.7)

the ith column of H7. (Remember the description of matrix-vector multiplcation as a linear
combination of columns (Remark 5.4.5).) However, H7 is defined to be the matrix whose
ith column is the binary digits of i (Definition 6.3.1), so the theorem follows.

We can also extend H7 in the following way.

124 CHAPTER 6. CHEAPER: ERROR-CORRECTING CODES

Definition 6.3.5. The Hamming 8-code H8 is defined to be the nullspace of the parity
check matrix

H8 =


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 . (6.3.8)

Note that if we delete the first row and first column of H8, we get H7, the parity check
matrix for the Hamming 7-code. Therefore, to be consistent with the Hamming 7-code, we

write an arbitrary element of H8 as


x0
x1
...
x7

 ∈ H8.

The key properties of the Hamming 8-code are summarized in the following theorem;
the details are left for you to explore in Problems 6.3.4–6.3.6.

Theorem 6.3.6. The Hamming 8-code H8 is the Hamming 7-code H7, extended by a parity
check bit x0; and H8 corrects 1 error and detects 2 errors.

Proof. Problem 6.3.4 explains why x0 is a parity check bit; Problem 6.3.5 determines a
generator matrix for H8 and works out its dimension; and Problem 6.3.6 describes decoding.

Problems

6.3.1. Let H7 and G7 be the parity check and generator matrices for the Hamming 7-code
(Definition 6.3.1).

(a) Find the matrix product H7G7.

(b) Now suppose H and G are parity check and generator matrices for the same code
C, and suppose that H is in RREF and the columns of G are linearly independent.
Suppose also that C has length n and dimension k. What will the matrix product HG
be? (For example, what will the size of HG be?)

6.3.2. Let H7 be the Hamming 7-code (Definition 6.3.1).

(a) Write out all of the codewords in H7.

(b) Find all shortest nonzero codewords in H7 (i.e., the nonzero codewords with the fewest
number of 1’s).

6.3.3. Suppose Yolanda is receiving transmissions sent using the Hamming 7-code, and she

6.3. THE HAMMING 7- AND 8-CODES 125

receives y =



1
0
1
1
1
0
0


. Correct y to a codeword y′, if necessary, and read off the message bits

3, 5, 6, and 7 to find the intended message m′. Do the same for y =



1
0
1
0
1
0
1


and y =



1
1
1
0
0
0
1


.

6.3.4. Let H7 and H8 be the Hamming 7-code and 8-code, respectively (Definitions 6.3.1

and 6.3.5). Prove that


x0
x1
...
x7

 ∈ H8 exactly when

x1...
x7

 ∈ H7 and x0 = x1 + · · ·+ x7 (i.e., x0

is a parity check bit for

x1...
x7

). (Suggestion: Compare the matrices H7 and H8.)

6.3.5. Let H8 be the Hamming 8-code (Definition 6.3.5).

(a) Use the fact that H8 = Null(H8) to find a basis for H8.

(b) Find the dimension of H8.

6.3.6. Let H8 be the Hamming 8-code (Definition 6.3.5), let x ∈ H8 be a transmitted

codeword, and let y be the corresponding received transmission. Let s = H8y =


s0
s1
s2
s3

 be

the syndrome of y.

(a) Suppose y is x with a single bit flipped, or in other words, y = x + ei (0 ≤ i ≤ 7).
Explain why it must be the case that s0 = 1, and explain how to use (s1, s2, s3) to
figure out what i is. (Suggestion: Imitate the proof of Theorem 6.3.4.)

(b) Suppose y is x with two bits flipped, or in other words, y = x+ ei + ej (0 ≤ i, j ≤ 7,
i ̸= j). Explain why it must be the case that s0 = 0, and explain why we cannot have
(s1, s2, s3) = (0, 0, 0).

126 CHAPTER 6. CHEAPER: ERROR-CORRECTING CODES

(c) Suppose again that y = x + ei + ej . Find two different pairs i, j with 0 ≤ i, j ≤ 7
and i ̸= j that produce the same syndrome H8y. (This is why we can only detect two
errors, not correct them.)

6.4 Hamming distance and error correction

Now, even after going through the details (or maybe even more so after going through the
details!), it may seem somewhat miraculous that the Hamming 7- and 8-codes work the
way they do. If you’re in an enterprising mood, however, you might wonder: How can we
come up with some other code that’s just as good, or maybe even better? To tackle that
question, it helps to have a concrete measure of what makes a code “good”.

Notation 6.4.1. An [n, k, d] binary code is a binary linear code C such that:

� C has length n;

� dim C = k; and

� d is the smallest number of nonzero coordinates appearing in a nonzero codeword of
C.

The numbers n, k, and d are called the length, dimension, and minimum distance of C,
respectively.

Example 6.4.2. Let C be the parity check code of length n+1 (Example 6.2.8). By rank-
nullity (Corollary 5.5.15), dimC = n, and since vectors are codewords of C exactly when
they contain an even number of 1’s, the minimum distance of C is 2. In other words, C is
an [n+ 1, n, 2] code.

Example 6.4.3. Let C be the repetition code of length n (Example 6.2.9). By the definition
of dimension, dimC = 1, and since the all-1’s vector is the only nonzero codeword of C, the
minimum distance of C is n. In other words, C is an [n, 1, n] code.

Note that if C is an [n, k, d] code, then k gives the number of “message bits” contained in
each codeword, and, as we will see momentarily, d determines the number of errors that can
be detected or corrected (at least in principle). The game of error-correcting can therefore
be summarized as trying to maxmimize both k and d for a given length n.

Example 6.4.4. By listing all of the vectors of H7, we see that H7 has minimum distance
3. Combining that with what we already know about H7, we see that H7 is a [7, 4, 3] code.
Similarly, Problems 6.3.5 and 6.4.1 together show that H8 is an [8, 4, 4] code.

To analyze the relationship between the minimum distance of a code and its error-
correction properties, we’ll need the following fundamental idea.

6.4. HAMMING DISTANCE AND ERROR CORRECTION 127

Definition 6.4.5. Let x,y be vectors in Fn
2 (or more generally, Fn for a field F). The

Hamming distance between x and y is:

d(x,y) = the number of coordinates in which x and y differ

= the number of nonzero coordinates in x− y

= the number of coordinate changes needed to go from x to y.

(6.4.1)

The Hamming weight wt(x) of x is the number of nonzero coordinates of x. In other words,

wt(x) = d(x, 0), d(x,y) = wt(x− y). (6.4.2)

Example 6.4.6. The Hamming distance between x =


1
0
0
1
0

 and y =


1
1
0
1
1

 is 2 because x

and y differ in exactly coordinates 2 and 5.

The following idea may help you picture why we call Hamming distance a “distance”.

Definition 6.4.7. A Hamming path of length k in Fn
2 is a sequence x0,x1, . . . ,xk ∈ Fn

2 such
that for 1 ≤ i ≤ k, the vectors xi−1 and xi differ in exactly one coordinate (i.e., xi − xi−1

has exactly one nonzero coordinate). We also say that the path x0,x1, . . . ,xk goes from x0

to xk.

011
111

000 100

110
010

001
101

Figure 6.4.1: A Hamming path in F3
2

For example, Figure 6.4.1 shows a Hamming path of length 3 between 000 and 111 in
F3
2. To be precise, the edges of the cube represent all Hamming paths of length 1, and the

highlighted path is the sequence 000, 100, 101, 111.

Theorem 6.4.8. For x,y ∈ Fn
2 , the Hamming distance d(x,y) is precisely the length of a

shortest Hamming path from x to y.

Proof. Suppose d(x,y) = k, or in other words, x and y differ in exactly k coordinates. In
that case, one the one hand, by starting with x and changing one coordinate at a time, we get
a Hamming path from x to y of length k; and on the other hand, if x = x0, . . . ,xm = y ∈ Fn

2

is a Hamming path of length m from x to y, then since we can only change one coordinate
when we go from xi−1 to xi, the length m of this path must be at least k. The theorem
follows.

128 CHAPTER 6. CHEAPER: ERROR-CORRECTING CODES

Corollary 6.4.9. Hamming distance is translation invariant. That is, for x,y, c ∈ Fn
2 , we

have that

d(x+ c,y + c) = d(x,y). (6.4.3)

Proof. If xi−1 and xi differ in exactly one coordinate, then so do xi−1 + c and xi + c, since

(xi + c)− (xi−1 + c) = xi − xi−1. (6.4.4)

Therefore, x = x0, . . . ,xk = y ∈ Fn
2 is a Hamming path from x to y if and only if

x + c = x0 + c,x1 + c, . . . ,xk + c = y + c ∈ Fn
2 is a Hamming path from x + c to

y + c, and the corollary follows from Theorem 6.4.8.

The mathematical version of a measure of distance is the following abstract construction.

Definition 6.4.10. A metric on a set X is a function d : X ×X → R (i.e., two inputs in
X, output is a real number) that satisfies the following four axioms for all x, y, z ∈ X:

1. d(x, y) ≥ 0.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x).

4. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

Theorem 6.4.11. Hamming distance d(x,y) is a metric on Fn
2 .

Proof. The first and third axioms of Definition 6.4.10 hold for Hamming distance because
the number of coordinates in which x and y differ is a nonnegative number defined sym-
metrically in x and y. The second axiom holds because two vectors differ in 0 coordinates
if and only if they are equal. The last axiom holds because of Problem 6.4.2.

The following theorem quantifies the idea that if a binary linear code C has a higher
minimum distance, then C will be able correct and detect more errors, at least in principle.
(Compare Problem 6.1.1.) Namely, we can use the following error-correction algorithm.

Algorithm 6.4.12. The nearest neighbor error-correction method, applied to a code C,
is the following procedure for error correction, expressed in the terms of our standard
framework (Definition 6.2.4).

� If there is a unique y′ ∈ C such that d(y,y′) is minimized, we correct y to y′. (For
example, if y ∈ C, then y′ = y is the unique codeword that minimizes d(y,y′), as
d(y,y) = 0.)

� If there is more than one vector y′ ∈ C such that d(y,y′) is minimized, we state
that y has been detected as an erroneous transmission, but cannot be corrected.
(The idea is that the different y′ minimizing d(y,y′) are equally probable as intended
transmissions.)

6.4. HAMMING DISTANCE AND ERROR CORRECTION 129

=

e

x

y

e

0

y−x

Figure 6.4.2: A distance between codewords anywhere also occurs at 0

Theorem 6.4.13. Let C be a binary linear code with minimum distance d. Then the nearest
neighbor method, applied to C, corrects ⌊(d− 1)/2⌋ errors and detects ⌊d/2⌋ errors.

Proof. By Theorem 6.4.8, if d(x,y) = e, then d(0,y − x) = d(x,y) = e (see Figure 6.4.2).
It follows that the minimum distance d of C is precisely the minimum distance between any
two distinct codewords x,y ∈ C.

So now, suppose e ≤ ⌊(d− 1)/2⌋, or in other words, 2e + 1 ≤ d. The error-correcting
claim in the theorem means precisely that the nearest neighbor method (Algorithm 6.4.12)
can correct e errors.

< 2e

< e
< e

x

y

x’

Figure 6.4.3: Two close neighbors implies two codewords close to each other

The question now is, how could the nearest neighbor method fail to correct up to e
errors? Well, in order for that to happen, there would have to be some possible received
transmission y with two neighboring codewords x and x′ such that both x and x′ are
distance ≤ e away from y, or in other words, d(x,y) ≤ e and d(x′,y) ≤ e. However, in that
case, by Theorem 6.4.11 and the triangle inequality (Definition 6.4.10), we would have

d(x,x′) ≤ d(x,y) + d(y,x′) ≤ 2e, (6.4.5)

violating our assumption that the minimum distance between two codewords is at least
2e + 1 (see Figure 6.4.3). Therefore, y can have at most one neighbor within distance e,
which means that the nearest neighbor method corrects up to e errors.

The analogous proof that the nearest neighbor method detects ⌊d/2⌋ errors is left to
you (Problem 6.4.3).

Note that the nearest neighbor method is not necessarily efficient, as it may require
making a lookup table with a nearest neighbor listed for each vector of Fn

2 (where n is the
length of C). In fact, for any particular code, it may be better to use a different method
that ends up having the same effect, like our decoding method for the Hamming 7-code.
The point of Theorem 6.4.13 is that for an [n, k, d] code, there is at least some method for
correcting ⌊(d− 1)/2⌋ errors and detecting ⌊d/2⌋ errors, so it is valuable to look for codes
with as large a minimum distance d as possible.

130 CHAPTER 6. CHEAPER: ERROR-CORRECTING CODES

Problems

6.4.1. Recall thatH7 has minimum distance 3 (Problem 6.3.2) and thatH8 contains exactly
the same codewords as H7, extended by a parity bit x0 (Problem 6.3.4).

(a) Prove that H8 has minimum distance 4.

(b) Now suppose that C is an [n, k, d] code, where d is odd, and that C+ is a code of length
n+ 1 consisting of the codewords in C, each extended by a parity bit. Prove that C+
has minimum distance d+ 1.

6.4.2. Prove that if x,y, z ∈ Fn
2 , then Hamming distance d(−,−) satisfies

d(x, z) ≤ d(x,y) + d(y, z). (6.4.6)

(Suggestion: Use Theorem 6.4.8.)

6.4.3. Let C be a binary linear code of minimum distance d, and suppose that 2e ≤ d.
Prove that if x is a transmitted codeword and y is a received transmission obtained by
applying e errors to x, then there is no codeword x′ ∈ C that is strictly closer to y than x.
(Suggestion: Proceeding by contradiction, suppose x′ is a codeword in C that is closer to y
than x is, and imitate the proof of Theorem 6.4.13.)

6.4.4. Let C be a binary linear code of length n and c ∈ C. For a nonnegative integer r,
we define Br[c], the closed r-ball around c to be

Br[c] = {x ∈ Fn
2 | d(x, c) ≤ r} . (6.4.7)

A code is said to be perfect if it is the disjoint union of the closed r-balls Br[c] for some
fixed r and all c ∈ C. The goal of this problem is to prove that the Hamming 7-code H7 is
perfect, with r = 1.

(a) Suppose c ∈ H7. How many vectors x are there in F7
2 such that d(x, c) ≤ 1? Describe

all such x.

(b) Prove that if x ∈ F7
2, x cannot be contained in two distinct 1-balls B1[c], B1[c

′] of
codewords c, c′ ∈ H7.

(c) Prove that every x ∈ F7
2 is contained in the 1-ball B1[c] of some c ∈ H7. (Suggestion:

How many vectors are there in the union of all 1-balls B1[c] of some c ∈ C?)

Chapter 7

Ideals, quotients, and finite fields

I see you’re a man with ideals. I better be going before you’ve still got them.

— Mae West

We’re building something here, detective. We’re building it from scratch. All
the pieces matter.

— Det. Lester Freamon, The Wire

7.1 Ideals

We come to a truly fundamental definition in ring theory.

Definition 7.1.1. Let R be a (commutative) ring. An ideal of R is a subset I of R satisfying
the following three axioms:

1. (Zero) The zero element of R is contained in I.

2. (Closed under addition) If a, b ∈ I, then a+ b ∈ I.

3. (Closed under R-multiplication) If a ∈ I and r ∈ R, then ra ∈ I.

That definition doesn’t look like much, does it? A little bit like subspace (Defini-
tion 5.3.3), perhaps. Well, as with any other piece of pure abstraction, if you want to start
to understand what ideals are, let’s look at some examples.

Example 7.1.2 (Even integers). Let R = Z, and let I be the set of even integers. Then I
is an ideal because:

1. 0 is even.

2. The sum of two even numbers is even.

3. The last axiom is worth considering in more detail. The point isn’t just that that the
product of even numbers is even; the point is that the product of an arbitrary integer
(even or odd) and an even number is even.

131

132 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

Example 7.1.3 (Silly examples). For a ring R, the set {0} is an ideal of R called the zero
ideal. The ring R is also an ideal of itself.

Example 7.1.4 (Multiples of m). For a fixed m ∈ Z, the set

(m) = mZ = {km | k ∈ Z} (7.1.1)

is an ideal of Z.

That should start to look familiar; remember Z/(m), our notation for the integers
mod m?

Example 7.1.5 (Multiples of m(x)). Similarly, if F is a field, for a fixed m(x) ∈ F [x], the
set

(m(x)) = {k(x)m(x) | k(x) ∈ F [x]} (7.1.2)

is an ideal of F [x].

Examples 7.1.4 and 7.1.5 are both particular cases of the following construction.

Definition 7.1.6. For a ring R and a fixed d ∈ R, the set

(d) = {rd | r ∈ R} (7.1.3)

is called the principal ideal generated by d.

Definition 7.1.7. For a ring R and fixed c, d ∈ R, the set

(c, d) = {rc+ sd | r, s ∈ R} (7.1.4)

is called the ideal generated by c and d.

See Problems 7.1.1 and 7.1.2. for proofs that the sets (d) and (c, d) are actually ideals.

Example 7.1.8 (Substitution kernel). For F a field and α ∈ F , the set

Iα = {f(x) ∈ F [x] | f(α) = 0} (7.1.5)

is an ideal of F [x] (Problem 7.1.3). Note that the substitution of a ∈ F into a polynomial
f(x) ∈ F [x] satisfies two important properties:

� The value that you get when you plug α into f(x) + g(x) is f(α) + g(α); and

� The value that you get when you plug α into f(x)g(x) is f(α)g(α).

Since we’ve chosen to make polynomials look like functions, those properties seem obvious,
right? But remember that polynomials aren’t functions; they’re algebraic objects defined
by setting certain rules on how to multiply an unspecified object x, along with elements
of F (Definition 3.3.1). In that context, you might even start to worry whether the above
“obvious” properties are actually true! Fortunately, they are, and the proof is relatively
straightforward; see Example 7.5.3 in Section 7.5. For now, you should feel free to rely on
those properties in Problem 7.1.3.

7.1. IDEALS 133

So by now, you should have some idea of what an ideal is, but probably still no idea
of why on earth you should care. For that, we’ll need to see what you can do with ideals,
which we’ll start to see in the next section.

To finish this section, however, we mention the following small but important (and
nonobvious) property of ideals.

Theorem 7.1.9. Let R be a ring, and let I be an ideal of R. Then I is closed under taking
negatives; that is, if a ∈ I, then −a ∈ I.

Proof. If a ∈ I, then since −1 ∈ R (in any ring), and I is closed under multiplication by
elements of R, (−1)a = −a ∈ I.

Problems

7.1.1. Let R be a commutative ring and a ∈ R, and define

(d) = {rd | r ∈ R} . (7.1.6)

The goal of this problem is to prove that (d) is an ideal of R.

(a) Explain how you know that 0 ∈ (d).

(b) What do two random elements of (d) look like? Explain why their sum must be in (d).

(c) For s ∈ R and a ∈ (d), explain why sa ∈ (d).

7.1.2. Let R be a commutative ring and c, d ∈ R, and define

(c, d) = {rc+ sd | r, s ∈ R} . (7.1.7)

The goal of this problem is to prove that (c, d) is an ideal of R.

(a) Explain how you know that 0 ∈ (c, d).

(b) What do two random elements of (c, d) look like? Explain why their sum must be in
(c, d).

(c) For t ∈ R and a ∈ (c, d), explain why ta ∈ (c, d).

7.1.3. Let F be a field and α ∈ F , and define

Iα = {f(x) ∈ F [x] | f(α) = 0} . (7.1.8)

The goal of this problem is to prove that Iα is an ideal of F [x].

(a) Explain how you know that 0 ∈ Iα.

(b) Suppose f(x), g(x) ∈ Iα. Explain why f(x) + g(x) ∈ Iα.

(c) For h(x) ∈ F and f(x) ∈ Iα, explain why h(x)f(x) ∈ Iα.

134 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

7.2 Quotient rings

One of the main purposes of defining ideals is to be able to kill them. That is to say, our first
(and most important) application of ideals is the construction of what are known as quotient
rings, or in other words, rings in which we have set certain ideals equal to 0. In particular,
after working with Z/(m) since back in Chapter 3, we finally give a real definition of Z/(m)!

First, however, we need another new piece of abstraction, one just as important as the
definition of ideals. (We’ll see an important variation on this definition in Chapter 10.)

Definition 7.2.1. Let R be a ring, and let I be an ideal of R. For r ∈ R, we define the
additive coset r + I to be

r + I = {r + a | a ∈ I} . (7.2.1)

If the context is clear, instead of saying “additive coset”, we just say coset.

Example 7.2.2. As always with ideals, let’s start with the even numbers; that is, take
R = Z and the ideal I = (2) (Definition 7.1.4), or in other words, the even numbers. Since

I = {. . . ,−4,−2, 0, 2, 4, 6, . . . } , (7.2.2)

we see that

1 + I = {. . . ,−3,−1, 1, 3, 5, 7, . . . } (7.2.3)

and

2 + I = {. . . ,−2, 0, 2, 4, 6, 8, . . . } . (7.2.4)

For a less interesting example, 0 + I = I.

However, the way we wrote the above examples is a little misleading, because the . . .
hide the fact that if we extend the lists for I and 2 + I a little bit, we see that as sets,

2 + I = {. . . ,−4,−2, 0, 2, 4, 6, 8, . . . } = I = 0 + I. (7.2.5)

Similarly, as sets,

3 + I = {. . . ,−3,−1, 1, 3, 5, 7, 9 . . . } = 1 + I. (7.2.6)

Continuing analogously, we see that a+ I = b+ I exactly when a and b are either both even
or both odd. In other words, even though there might appear to be infinitely many cosets
of I in R, one for each r ∈ Z, in fact, there are only two: 0 + I and 1 + I.

Example 7.2.3. As we’ll see, the ideal (5) = 5Z (Example 7.1.4) has exactly 5 cosets in
Z:

0 + (5) = (5) = {. . . , 0, 5, 10, 15, . . . } ,
1 + (5) = {. . . , 1, 6, 11, 16, . . . } ,
2 + (5) = {. . . , 2, 7, 12, 17, . . . } ,
3 + (5) = {. . . , 3, 8, 13, 18, . . . } ,
4 + (5) = {. . . , 4, 9, 14, 19, . . . } .

(7.2.7)

7.2. QUOTIENT RINGS 135

Note that 5+ (5) = (5) (write it out!), and more generally, you should start to see that the
cosets of (5) resemble the structure of Z/(5). And of course, there’s nothing special about
5; for any positive integer m, the ideal (m) = mZ has exactly m cosets, which we can list
in exactly the same way (Problem 7.2.1).

Our next task is to show that belonging to the same coset generalizes the idea of “con-
gruent mod m” (Definition 3.1.4).

Theorem 7.2.4. Let R be a ring, let I be an ideal of R, and let r, s ∈ R. Then the following
are equivalent (one statement holds if and only the other holds):

1. r + I = s+ I (i.e., the cosets r + I and s+ I are the same set).

2. r ∈ s+ I.

3. r − s ∈ I.

4. r = s+ a for some a ∈ I.

If you look back at Definition 3.1.4, you’ll see that conditions (3) and (4) are general-
izations of the definition of being congruent mod m. In fact, you may find it convenient to
think of being in the same coset of I as being “congruent mod I”.

Proof. To prove that the four statements are equivalent, we need to show that (1) implies
(2), (2) implies (3), (3) implies (4), and (4) implies (1). We do two implications, and leave
the others for you.

Suppose (1) holds. That means that every element of the form r+ a with a ∈ I is equal
to some s + b for some b ∈ I, and vice versa. In particular, this holds for a = 0 ∈ I, so
r = r + 0 = s + b for some b ∈ A. By definition of coset, r ∈ s + I, which means that (2)
holds.

For (2) implies (3), see Problem 7.2.2.

Suppose (3) holds. Then r− s = a for some a ∈ I, which means that r = s+ a for some
a ∈ I.

For (4) implies (1), see Problem 7.2.3.

It will also be useful to have a name for condition (2) of Theorem 7.2.4.

Definition 7.2.5. Let R be a ring, let I be an ideal of R, and let r, s ∈ R. To say that r
is a representative of the coset s+ I means that r ∈ s+ I. Note that by Theorem 7.2.4, a
coset can be represented by any of its elements, because r and s are contained in the same
coset exactly when r + I = s+ I.

The question of different representatives for the same coset is the heart of the following
key definition.

Definition 7.2.6. Let R be a ring and let I be an ideal of R. We define the quotient ring
R/I as follows.

136 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

� Set: The elements of R/I are the cosets of I in R. Note that if r and s represent the
same coset of I, then the cosets r+ I and s+ I are actually the same element of R/I,
since r + I = s+ I.

� Addition: For r + I, s+ I ∈ R/I, we define the sum

(r + I) + (s+ I) = (r + s) + I. (7.2.8)

� Multiplication: For r + I, s+ I ∈ R/I, we define the product

(r + I)(s+ I) = rs+ I. (7.2.9)

The zero element of R/I is 0 + I = I, and the one element is 1 + I.

Remark 7.2.7. Let R be a ring and let I be an idea of R. Since I is the zero element of
the ring R/I, we can think of the quotient ring R/I as “R with I set to 0”. Note that if
I = (m) is the principal ideal generated by m ∈ R, then I = (m) is exactly the set of all
necessary algebraic consequences of setting m = 0, because if we set m = 0, multiplying
both sides by r, we see that all multiples rm (r ∈ R) of m must also be set to 0. We can
therefore think of R/(m) as “R setting m = 0”, a generalization of the m = 0 Principle of
Section 3.1.

The tricky part of Definition 7.2.6 is determining whether the operations in a quotient
ring are well-defined, or in other words, unambiguous. To understand the issue here, it’s
important to ask the following question.

Ask Yourself 7.2.8. What could possibly be ambiguous about Definition 7.2.6? Specif-
cally, is there more than one way you could possibly interpret (7.2.8) and (7.2.9)?

Ask Yourself 7.2.9. Seriously, ask yourself: What could possibly be fishy about Defini-
tion 7.2.6?

Before we answer Ask Yourself 7.2.8, let’s consider one specific, and actually familiar,
example.

Example 7.2.10. Taking R = Z, consider the ideal I = (2) (the even integers) of Z. The
quotient ring Z/(2) has two elements, namely, the two cosets of I, which are 0 + I = I
(the set of even numbers) and 1+ I (the set of odd numbers). Applying (7.2.8), we see, for
example, that

(1 + I) + (1 + I) = 2 + I = I, (7.2.10)

since 2 is in the set of even numbers 0 + I = I (by Theorem 7.2.4).

Similarly, consider the ideal I = (3) of Z (the integers divisible by 3). The quotient ring
Z/(3) has three elements, I, 1 + I, and 2 + I, and applying (7.2.9), we see, for example,
that

(2 + I)(2 + I) = 4 + I = 1 + I, (7.2.11)

7.2. QUOTIENT RINGS 137

since 4 ∈ 1 + I. Since −1 + I = 2 + I, we could equivalently see that

(2 + I)(−1 + I) = −2 + I = 1 + I, (7.2.12)

since, again, −2 ∈ 1 + I, as −2 and 1 are congruent mod I.
More generally, let I = (m) for some positive integer m. If m is understood, by saying

that we are working in Z/(m), and we regard integers a, b, etc. “in Z/(m)” as abbreviations
for the cosets a + I, b + I, etc., then we see that Definition 3.1.3 is just a special case of
Definition 7.2.6. (In particular, if I = (2) or (3), then we get exactly the operations described
in Example 3.1.6.) Furthermore, the Congruent Subsitution Principle of Section 3.1 holds
precisely because we are choosing different representatives for the same coset.

We are now ready to show that Definition 7.2.6 genuinely defines a ring R/I. Again,
the main issue is whether the ring operations (7.2.8) and (7.2.9) are well-defined.

Theorem 7.2.11. Let R be a ring and let I be an ideal of R. Then the operations (7.2.8)
and (7.2.9) in R/I are well-defined and give R/I the structure of a ring with zero element
I and one element 1 + I.

Proof. Again, the main issue is whether the operations (7.2.8) and (7.2.9) are well-defined.
To finally give an answer to Ask Yourself 7.2.8, the problem with (7.2.8) and (7.2.9) is
that the sum (r + I) + (s+ I) and product (r + I)(s+ I) seem to depend on the choice of
coset representatives r and s. So what we need to show is that if we choose different coset
representatives, we get the same result. (See, for example, (7.2.11) and (7.2.12).)

So suppose r, r′ ∈ R are representatives for the same coset, as are s, s′ ∈ R. By
Theorem 7.2.4, we see that r′ = r + a and s′ = s+ b for some a, b ∈ I. Therefore, applying
(7.2.8), we see that

(r′ + I) + (s′ + I) = (r′ + s′) + I = (r + s+ (a+ b)) + I. (7.2.13)

However, since I is closed under addition, a+ b ∈ I, and so

(r′ + I) + (s′ + I) = (r + s+ (a+ b)) + I = (r + s) + I = (r + I) + (s+ I). (7.2.14)

It follows that the definition of addition in R/I is independent of choices of coset represen-
tatives, and therefore, well-defined (unambiguous).

Similarly, applying (7.2.9), we see that

(r′ + I)(s′ + I) = (r′s′) + I = ((r + a)(s+ b)) + I = (rs+ rb+ sa+ ab) + I. (7.2.15)

Here is precisely the moment that we use the fact that I is not just closed under multiplica-
tion by other elements of I, but also by arbitrary elements of R (Definition 7.1.1). Because
of that property, rb, sa, and ab are all elements of I, and because I is closed under addition,
so is rb+ sa+ ab. It follows that

(r′ + I)(s′ + I) = (rs+ rb+ sa+ ab) + I = rs+ I = (r + I)(s+ I), (7.2.16)

138 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

and therefore, that multiplication in R/I is well-defined.
It remains to check that the axioms of a ring (Definition 4.2.2) all hold. However, this

essentially follows directly from the fact that the ring axioms hold in R. For example, for
arbitrary elements r + I, s + I, t + I ∈ R/I, we check associativity of multiplication as
follows:

((r + I)(s+ I))(t+ I) = (rs+ I)(t+ I)

= ((rs)t+ I)

= (r(st) + I)

= (r + I)(st+ I)

= (r + I)((s+ I)(t+ I)),

(7.2.17)

where the third equality follows from associtivity of multiplication in R, and the others
follow from the definition of multiplication in R/I. The other axioms can be checked
similarly (Problem 7.2.4), and the theorem follows.

Whew! That was a lot of definitions for what may seem like not much reward: In terms
of the examples we have seen so far, all we have done is confirm that Section 3.1 is not
somehow secretly inconsistent. However, in keeping with our fundamental dogma:

Abstraction ⇒ Simplification ⇒ Generalization ⇒ Power

Let me point out that all of the pure abstraction above is in the end probably less work
than directly proving that the operations in Z/(m) are well-defined, without using ideals.
Furthermore, as we’ll see momentarily, the full abstract definition of R/I allows us to
consider new examples of quotient rings, most notably, finite fields.

Problems

7.2.1. In the ring Z, let (4) be the principal ideal generated by 4.

(a) Write out the elements of (4). (There are infinitely many, but they fall into a pattern
you should indicate by)

(b) Similarly, write out the elements of each of the four cosets of (4).

7.2.2. (Proves Theorem 7.2.4) Let R be a ring, let I be an ideal of R, and let r, s ∈ R.
Suppose r ∈ s + I. Prove that r − s ∈ I. (Suggestion: What does it mean to say that
r ∈ s+ I?)

7.2.3. (Proves Theorem 7.2.4) Let R be a ring, let I be an ideal of R, and let r, s ∈ R.
The goal of this problem is to prove that if r = s + a for some a ∈ I, then r + I = s + I
(i.e., each set is contained in the other). Suppose r = s+ a for some a ∈ I.

(a) Prove that r + I ⊆ s + I by proving that if t ∈ r + I, then t ∈ s + I. (Suggestion:
What properties of the definition of ideal do we use here?)

(b) Prove that s = r+ b for some b ∈ I. (Suggestion: What properties of ideals do we use
here?)

7.3. COMPUTATION IN F [x]/(m(x)) 139

(c) Prove that s+ I ⊆ r + I by proving that if t ∈ s+ I, then t ∈ r + I.

7.2.4. (Proves Theorem 7.2.11) Let R be a ring and let I be an ideal of R. This problem
goes through the formalities of checking that the ring axioms hold for the quotient ring
R/I.

(a) What do three arbitrary elements of R/I look like? (Suggestion: See the end of the
proof of Theorem 7.2.11.)

(b) Prove that addition is associative in R/I.

(c) Prove that I is the additive identity in R/I.

(d) Prove that multiplication in R/I is commutative.

(e) Prove that 1 + I is the multiplicative identity of R/I.

(f) Prove that the distributive law holds in R/I.

7.3 Computation in F [x]/(m(x))

We come to what turns out to be one of the single most useful topics in this book.

Motivating Problem 7.3.1. Let F be a field, let m(x) be a polynomial in F [x], and
let R = F [x]/(m(x)) (the ring of polynomials mod m(x)). How do we compute the ring
operations of addition and multiplication in R? How can we tell if f(x) + (m(x)) is a unit
in R, and if it is, how do we compute its (multiplicative) inverse?

First, let’s review how to solve these same problems in Z/(m). Let m be a positive
integer, and let I = (m).

� By the Division Theorem 2.3.1, every a ∈ Z is congruent to exactly one element of
{0, . . . ,m− 1} mod I, so by Theorem 7.2.4), I has exactly m cosets in Z, namely,
0 + I, . . . , (m− 1) + I. To avoid having to write +I all the time, we abbreviate a+ I
as just a, with the understanding that we are working in Z/(m). To standardize
coset representatives, we also call the representative of a given coset r + I that lies
in the range 0, . . . ,m − 1 the reduced representative of r + I; again, because of the
Division Theorem, this is precisely the remainder obtained when dividing r by m.
Note that while it’s sometimes helpful to use non-reduced representatives, reduced
representatives are perfect for the purpose of figuring out, say, when two elements are
equal.

� Definition 7.2.6 tells us that to calculate a+b in Z/(m), we can calculate a+b in Z and
then use the Division Theorem to find the reduced represenative of a+b. We calculate
ab similarly. Note that this is precisely the definition of addition and multiplication
from Definition 3.1.3.

140 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

� Note that inverting a in Z/(m) is the same as solving ax = 1 in Z/(m), which, by
Theorem 7.2.4, is the same as solving ax+my = 1 in Z. Corollary 3.2.2 then tells us
that a solution is possible exactly when gcd(a,m) = 1, in which case we can invert a
by Euclidean Reduction.

In a nutshell, computation in F [x]/(m(x)) works exactly the same way! More precisely,
for the rest of this section, let F be a field, let m(x) be a polynomial in F [x], let I = (m(x))
be the principal ideal generated by m(x) (Definition 7.1.6), and let R = F [x]/m(x). We
begin by defining reduced representatives for cosets of I in R.

Theorem 7.3.2. Every coset f(x)+I has a unique representative r(x) such that deg r(x) <
degm(x), computed by finding the remainder r(x) upon dividing f(x) by m(x) (Theo-
rem 3.4.4).

Proof. Problem 7.3.1.

Definition 7.3.3. For f(x) ∈ F [x] we define the reduced representive of f(x) + Ito be the
unique representative of f(x) + I such that deg r(x) < degm(x), as per Theorem 7.3.2.

Definition 7.3.4. To avoid having to write +I or mod I all of the time, we abbreviate the
coset x + I as α ∈ R. Note that by the definition of the ring operations of R, we can also
abbreviate f(x) + I as f(α); in other words, we indicate reducing a polynomial f(x) mod
I by replacing x with α. Note also that since m(x) ∈ I, by the definition of quotient ring,
m(α) = 0. We therefore sometimes describe α as a root of m(x).

Notation 7.3.5. Combining Definitions 7.3.3 and 7.3.4, we see that just as we can represent
the elements of Z/(m) as 0, . . . ,m− 1, we can represent the elements of R = F [x]/(m(x))
as polynomials in α of degree up to (degm(x))−1. Since every element of R = F [x]/(m(x))
can thereby be written as a polynomial in α, we also sometimes describe R as “F [α], where
α is a root of m(x).” In this context, F [α] is pronounced “F adjoin α.”

To summarize, combining Theorem 7.3.2, Definitions 7.3.3 and 7.3.4, and Notation 7.3.5,
we see that:

The elements of F [x]/(m(x)): Suppose F is a field and m(x) ∈ F [x] has degree e.
If R = F [α], where α is a root of m(x), then each element of R can be represented
uniquely as a polynomial of degree ≤ e − 1 in α. In other words, we can take the
elements of F [x]/(m(x)) = F [α] to be the set of all polynomials in α of degree at
most e− 1.

In particular, if F = Fp, then R has pe elements, as there are pe polynomials of degree
≤ e− 1 (see Problem 3.3.5).

Now, as with Z/(m), there are times when it might be more convenient to use representa-
tives other than the reduced representatives for elements of F [x]/(m(x)). However, reduced

7.3. COMPUTATION IN F [x]/(m(x)) 141

representatives do at least give definite algorithms for ring operations in F [x]/(m(x)), which
we can see as follows. Let R = F [α], where α is a root of m(x) (Notation 7.3.5), and let
d = degm(x).

� Since any element of F [α] can be expressed uniquely as a polynomial in α of degree
at most d− 1, and the sum of two such polynomials is a polynomial of degree at most
d− 1, addition in F [α] is just ordinary polynomial addition with coefficients in F .

� For f(α), g(α) ∈ F [α], to find the product f(α)g(α), we can compute f(α)g(α) as a
polynomial, and then reduce it using long division by m(α) (since m(α) = 0), with
the remainder being the reduced representative of the product.

When computing products in practice, long division is often not the most efficient
method, as we can see in the following example.

Example 7.3.6. Let R = F2[α], where α is a root of m(x) = x4 + x+ 1. To compute the
product of α3 + α+ 1 and α3 + α2, we first compute:

(α3 + α+ 1)(α3 + α2) = α6 + α5 + α4 + α2. (7.3.1)

(Check that calculation yourself, remembering that 2α3 = 0, since the field of coefficients
is F2.)

However, we’re not done yet, as we need to find a reduced representative for this product.
Here, instead of doing long division by α4+α+1, it’s often better for both hand and machine
computation to use the fact that α4 + α+ 1 = 0, yielding the following consequences:

α4 = −α− 1 = α+ 1

α5 = α2 + α

α6 = α3 + α2.

(7.3.2)

The point of those facts is that we can use them to reduce higher powers to lower powers
until we get a sum of powers of α less than 4. In any case, our final answer therefore
becomes

α6 + α5 + α4 + α2 = (α3 + α2) + (α2 + α) + (α+ 1) + α2 = α3 + α2 + 1, (7.3.3)

using the fact that 2α2 = 0 and 2α = 0.

As for inverses, they work almost exactly the same as they do in Z/(m), in that the
solution comes as a direct consequence of Bezout’s identity (in this case, Corollary 3.6.4).

Corollary 7.3.7. Let R = F [α], where α is a root of m(x) ∈ F [x]. For b(x) ∈ F [x], the
element b(α) ∈ R has an inverse in R if and only if gcd(b(x),m(x)) = 1, in which case the
inverse g(α) of b(α) can be computed by solving

f(x)m(x) + g(x)b(x) = 1 (7.3.4)

in F [x], using Euclidean Reduction for polynomials.

142 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

In particular, we come to the following new construction for fields, which is of greatest
interest to us when F is finite (especially F = F2), in which case we get a finite field.

Corollary 7.3.8. Let R = F [x]/(m(x)). Then R is a field if and only if m(x) is irreducible.

Proof. On the one hand, if m(x) has no factors other than units and associates, then for
any b(x) with deg b(x) < degm(x), we have that gcd(m(x), b(x)) = 1, which means that
b(α) is a unit, by Corollary 7.3.7. On the other hand, if m(x) = f(x)g(x), Problem 7.3.5
shows that R is not an integral domain, and therefore not a field (Theorem 4.2.12).

We’ll return to the topic of finite fields in Section 7.6. For now, we turn to an example
of finiding inverses in a quotient ring F [x]/(m(x)).

Example 7.3.9. Let m(x) = x4 + x + 1 ∈ F2[x], and let R = F2[α], where α is a root
of m(x). (In other words, let R = F2[x]/(m(x)).) By Corollary 7.3.7, to look for the
(multiplicative) inverse of β = b(α) = α2 + 1 in R, we solve

f(x)m(x) + g(x)b(x) = 1 (7.3.5)

in F2[x]. Applying the Euclidean Algorithm, we get

m(x) = (x2 + 1)b(x) + x

b(x) = (x)(x) + 1.
(7.3.6)

So gcd(m(x), b(x)) = 1, which means that β actually has an inverse in R. To calculate β−1,
we use Euclidean rewriting:

x = m(x) + (x2 + 1)b(x)

1 = b(x) + (x)(x)

= b(x) + x(m(x) + (x2 + 1)b(x))

= xm(x) + (x3 + x+ 1)b(x).

(7.3.7)

It follows that β−1 = α3 + α+ 1. (But to make sure, go check that β(α3 + α+ 1) = 1 in R
yourself!)

Note that we can simplify the bookkeeping in (7.3.7) by working “mod m(x)”, or in
other words, not bothering to keep track of the multiples of m(x) in your rewriting. (This
is analogous to what we did in Example 3.2.3 while solving 50x = 2 in Z/(68).) That is, if
we work mod m(x), (7.3.7) becomes:

x = (x2 + 1)b(x)

1 = b(x) + (x)(x)

= b(x) + x(x2 + 1)b(x)

= (x3 + x+ 1)b(x).

(7.3.8)

Definitely simpler, don’t you think?

7.3. COMPUTATION IN F [x]/(m(x)) 143

We conclude this section with a complete summary of how to compute in F [x]/(m(x)).

How to compute in F [x]/(m(x))

Let m(x) = xe+ce−1x
e−1+ · · ·+c1x+c0 be a polynomial of degree e in F [x], and let

α be a root of m(x). All elements of R = F [x]/(m(x)) are expressed as polynomials
in α.
Reduction: We can use the equation

αe = −ce−1α
e−1 − · · · − c1α− c0 (7.3.9)

to reduce any polynomial β of degree ≥ e in α to a polynomial of degree < e in
α, giving the (unique) reduced form of β. Note that in our most common frequent
setting, where our polynomial coefficients are in F2, we have that +1 = −1 and the
minus signs in (7.3.9) can be ignored.
Now suppose β, γ are elements of R in reduced form.
Addition: To compute β + γ, use ordinary polynomial addition.
Multiplication: To compute βγ, compute the product βγ as an ordinary polyno-
mial and then reduce to a polynomial of degree < e. (See reduction, above.)
Division: To compute β−1, where β = b(α):

1. Use the Euclidean algorithm to compute gcd(m(α), b(α)) as polynomials in α.
If the GCD is not 1, then β is not invertible.

2. Otherwise, Euclidean Reduction gives f(α), g(α) such that

f(α)m(α) + g(α)b(α) = 1. (7.3.10)

But then, since m(α) = 0, g(α)b(α) = 1, or in other words, β−1 = g(α).
Note that for efficiency, you can apply m(α) = 0 from the very beginning of
Euclidean Reduction.

Field vs. zero divisors: By Corollary 7.3.8, if m(x) is irreducible, then R is a
field; and if m(x) is reducible, then for any nonconstant divisor b(x) of m(x), b(α)
is a zero divisor in R.

Problems

7.3.1. (Proves Theorem 7.3.2) Let F be a field, and for a nonzero m(x) ∈ F [x], let I =
(m(x)) (the principal ideal generated by m(x), see Definition 7.1.6). Suppose f(x) ∈ F [x].

(a) Prove that the coset f(x) + I contains some r(x) such that deg(r(x)) < deg(m(x)).
(Suggestion: What is the analogous statement for the ideal (m) of Z?)

144 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

(b) Prove that if r1(x), r2(x) ∈ f(x) + I and both r1(x) and r2(x) have degree strictly
less than deg(m(x)), then r1(x) = r2(x). (Suggestion: What can you say about
r2(x)− r1(x)?)

7.3.2. Find reduced representatives for the following products βγ in R = F2[α], where α
is a root of a particular m(x) ∈ F2[x]. (In other words, R = F2[x]/(m(x)).)

(a) m(x) = x4 + 1, β = α3 + α2, γ = α2 + α+ 1.

(b) m(x) = x4 + x3 + 1, β = α3 + 1, γ = α2 + α+ 1.

(c) m(x) = x5 + x+ 1, β = α4 + α+ 1, γ = α3 + α+ 1.

(d) m(x) = x5 + x3 + x2 + 1, β = α4 + α2 + α+ 1, γ = α4 + α3 + α2.

7.3.3. For each of the following m(x) ∈ F2[x], let R = F2[α], where α is a root of m(x). (In
other words, R = F2[x]/(m(x)).) For each β ∈ R, either find the (multiplicative) inverse of
β in R or explain why no such inverse exists.

(a) m(x) = x4 + 1, β = α3 + α2.

(b) m(x) = x4 + x3 + 1, β = α3 + 1.

(c) m(x) = x5 + x2 + 1, β = α4 + α+ 1.

(d) m(x) = x5 + x3 + x2 + 1, β = α4 + α3 + α2 + α+ 1.

7.3.4. The goal of this problem is to compare and contrast two different rings R1 and R2.

(a) Suppose R = F2[x]/(m(x)), where m(x) is a polynomial of degree 2 in F2[x]. How
many elements does R have? Briefly explain. (See Theorem 7.3.2.)

(b) Now let R1 = F2[α1], where α1 is a root of x2 + 1, and let R2 = F2[α2], where α2 is a
root of x2 + x + 1. Make multiplication tables for each of R1 and R2, using reduced
representations for all elements.

(c) For i = 1, 2, answer the following questions: Does Ri have zero divisors (Defini-
tion 4.2.6)? How many units are there in Ri?

7.3.5. Prove that if F is a field, m(x), f(x), g(x) ∈ F [x], m(x) = f(x)g(x), deg(f(x)) <
deg(m(x)), and deg(g(x)) < deg(m(x)), then R = F [x]/(m(x)) has zero divisors (Defini-
tion 4.2.6). (For notation, let α ∈ R be a root of m(x), as usual.)

7.4 Principal ideal domains

Returning to abstraction, you may have noticed that the only examples of ideals of F [x]
that we have considered are principal ideals, that is, the set of all F [x]-multiples of some
m(x) ∈ F [x]. There’s a good reason for that: We’ll momentarily show that every ideal of
F [x] is a principal. This turns out to be such a useful property that we give it a name.

7.4. PRINCIPAL IDEAL DOMAINS 145

Definition 7.4.1. To say that a ring R is a principal ideal domain, or PID, means that R is
an integral domain (Definition 4.2.6) and that every ideal of R is principal. In other words,
the second condition says that if I is an ideal of R, then I = (a) (the set of all R-multiples
of a) for some a ∈ I.

As you might hope, or at least suspect, our favorite rings are all PIDs.

Theorem 7.4.2. Let R be either Z or F [x] (F a field), or more generally, let R be a
Euclidean domain. Then R is a PID.

Proof. For the case R = Z, let I be an ideal of R. If I = {0}, then I = (0), and I is
principal. Otherwise, I contains nonzero elements of Z; in fact, since I is closed under
multiplication by −1 ∈ Z, I must contain positive elements.

So let d be the smallest positive element of I. For any other a ∈ I, by the Division
Algorithm, we have that

a = qd+ r where 0 ≤ r < d. (7.4.1)

However, since −q ∈ R, d ∈ I, and I is an ideal, −qd ∈ I; and since a ∈ I, −qd ∈ I, and
I is an ideal, a − qd ∈ I. Therefore, r = a − qd ∈ I, and since d is the smallest positive
element of I, we must have r = 0. It follows that I = (d).

For a field F , the case R = F [x] follows entirely analogously; see Problem 7.4.1. In fact,
more or less the same proof works in any Euclidean domain; see Problem 7.4.2.

Alternate proof. For the case R = Z, let I be an ideal of R. If I = {0}, then I = (0), and
I is principal; otherwise, I contains nonzero elements of Z.

In that case, let d be a nonzero element of I where |d| is as small as possible among
nonzero elements of I. For any other a ∈ I, by the Signed Division Theorem 2.3.4, we have
that, for some q, r ∈ Z,

a = dq + r with |r| ≤ |d|
2
. (7.4.2)

However, since −q ∈ R, d ∈ I, and I is an ideal, −qd ∈ I; and since a ∈ I, −qd ∈ I, and I
is an ideal, a− qd ∈ I. Therefore, r = a− qd ∈ I, and since d is a smallest nonzero element
of I and r is a smaller element of I, we must have r = 0. It follows that I = (d).

The fact that every ideal in F [x] is principal leads to an important definition (Defini-
tion 7.4.4), for which the following theorem provides some useful context.

Theorem 7.4.3. Suppose R is a domain (Definition 4.2.6), and suppose that for a, b ∈ R,
we have (a) = (b) (i.e., the two elements a and b generate the same principal ideal). Then
a and b are associates (Definition 4.3.3).

Proof. Problem 7.4.3.

Definition 7.4.4. Let F be a field, and let I be an ideal of F [x]. To say that d(x) is the
minimal polynomial of I means that I = (d(x)). Note that if we choose the leading term of
d(x) to be 1, then d(x) really is unique and not just “unique up to associates.”

146 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

Now, the proof of Theorem 7.4.2 is nonconstructive, in that it does not describe a
method for computing the minimal polynomial d(x) in practice, partly because we have
not yet specified the data structure that defines I (e.g., some kind of list of polynomials).
However, if, for example, we begin with a finite set of generators for I, we can compute
d(x), and you’ll never guess what algorithm we use to do that. (OK, at this point in the
book, maybe you can guess.)

Theorem 7.4.5. Let F be a field, and consider the ideal I = (a(x), b(x)) of F [x], where
a(x) and b(x) are nonzero polynomials in F [x]. Then the minimal polynomial of I is
gcd(a(x), b(x)), which can be computed by the Euclidean algorithm.

Proof. Let d(x) = gcd(a(x), b(x)). On the one hand, since d(x) divides both a(x) and b(x),
d(x) divides every element of I = {r(x)a(x) + s(x)b(x) | r(x), s(x) ∈ F [x]}, which means
that I is contained in (d(x)). Conversely, by Bézout’s identity, we know that

d(x) = r(x)a(x) + s(x)b(x) (7.4.3)

for some r(x), s(x) ∈ F [x], which means that d(x) and all of its F [x]-multiples are contained
in I; in other words, (d(x)) is contained in I. It follows that I = (d(x)), and the theorem
follows.

To conclude this section, we can now state the next step in proving unique factorization
in our favorite rings Z and F [x]. (Theorem 4.3.11).

Theorem 7.4.6. If R is a PID, then unique factorization holds in R, in the sense of
Theorem 4.3.11.

Again, while this kind of theoretical result is important, it’s not the main focus of this
book, so if you’re interested in how that proof goes, see Section A.2.

Problems

7.4.1. (Proves Theorem 7.4.2) Let F be a field. The goal of this problem is to prove that
every ideal of F [x] is principal. To start, suppose that I is a nonzero ideal of F [x].

(a) The first step is to find a “smallest” possible nonzero element of I. What does “small-
est” mean here?

(b) Now suppose that d(x) is a smallest possible nonzero element of I. Imitating the Z
case of the proof of Theorem 7.4.2, prove that any a(x) ∈ I is a multiple of d(x).

7.4.2. (Proves Theorem 7.4.2) Let R be a Euclidean domain with size function σ (Defini-
tion 4.3.7). The goal of this problem is to prove that every ideal of R is principal. To start,
suppose that I is a nonzero ideal of R.

(a) The first step is to find a “smallest” possible nonzero element of I. What does “small-
est” mean here?

7.5. HOMOMORPHISMS 147

(b) Now suppose that d is a smallest possible nonzero element of I. Imitating the Z case
of the proof of Theorem 7.4.2, prove that any a ∈ I is a multiple of d.

7.4.3. (Proves Theorem 7.4.3) Suppose R is a domain and a, b ∈ R.

(a) Prove that if b ∈ (a) (the principal ideal generated by a) then a divides b.

(b) Prove that if (a) = (b) (i.e., the two principal ideas are the same set), then a and b
are associates (Definition 4.3.3). (Suggestion: Use part ((a)) and cancellation (Theo-
rem 4.2.8).)

7.4.4. Consider the ideal I = (x3 + 2x+ 2, x4 + 2x3 + x2 + x+ 3) in F5[x]. Compute the
minimal polynomial of I.

7.4.5. (Compute minimal polynomial for ideal generated by three.)

7.5 Homomorphisms

Before we can get to the big finish of this chapter, we need to establish a few more ideas
centered around the main idea of a homomorphism. To be honest, the things you really
need from this section are:

1. The idea of isomorphism and what it means for two rings to be isomorphic (Defini-
tion 7.5.9); and

2. The definition of automorphism (Defnition 7.5.13).

However, the more general idea of a homomorphism (Definition 7.5.1) doesn’t require much
more work, and is so fundamental, that I can’t resist the temptation to include the fuller
picture. So please bear with me while I indulge my theoretical side for a bit here.

Anyway, without further ado, here’s the main definition.

Definition 7.5.1. Let R and R′ be rings. To say that a function φ : R → R′ is a
homomorphism means that for all r, s ∈ R,

φ(r + s) = φ(r) + φ(s), φ(rs) = φ(r)φ(s). (7.5.1)

In other words, a homomorphism is a function between rings that preserves addition and
multiplication.

Example 7.5.2. Let R be a ring, and let I be an ideal of R. Define a function φ : R → R/I
by declaring

φ(r) = r + I (7.5.2)

for all r ∈ R. Then φ is a homomorphism called the canonical homomorphism from R to
R/I. Note that in this case, the two conditions of Definition 7.5.1 become

(r + s) + I = (r + I) + (s+ I) (rs) + I = (r + I)(s+ I), (7.5.3)

148 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

and those equalities hold by the definition of R/I (Definition 7.2.6). In fact, we can think
of the definition of R/I as being chosen to ensure that the canonical homomorphism really
is a homomorphism.

Example 7.5.3. Let F be a field, and fix some α ∈ F . We define a function φ : F [x] → F
by declaring

φ(f(x)) = f(α) (7.5.4)

for all f(x) ∈ F [x]. Then φ turns out to be a type of homomorphism known as a substitution
homomorphism.

The proof that φ is a homomorphism is not deep, and boils down to checking that, for
all f(x), g(x) ∈ F [x], whether you compute f(α) + g(α) and f(α)g(α) by multiplying the
polynomials first and then substituting, or by substituting first and then multiplying. The
notation is annoying, though, so we’ll just discuss the basic idea for the easier verification
(checking f(α) + g(α)). The point is that the sum f(x) + g(x) in F [x] is defined by

anx
n + · · · + a1x+ a0

+ bnx
n + · · · + b1x+ b0

(an + bn)x
n + · · · + (a1 + b1)x+ (a0 + b0).

(7.5.5)

However, because of the commutativity and associativity of addition in F and the distribu-
tive law in F , we also have that

anα
n + · · · + a1α+ a0

+ bnα
n + · · · + b1α+ b0

(an + bn)α
n + · · · + (a1 + b1)α+ (a0 + b0),

(7.5.6)

so adding first and then substituting produces the same result as substituting and then
adding. A similar, but more complicated (and did I mention, notationally annoying), argu-
ment shows the analogous equality holds for f(α)g(α), and so φ is a homomorphism.

Example 7.5.4. Let R be a ring, and let φ : R → R be an automorphism of R. Define a
map Φ : R[x] → R[x] by declaring that for f(x) = anx

n + · · ·+ a1x+ a0 ∈ R[x], we define
the polynomial (Φ(f))(x) by

(Φ(f))(x) = φ(an)x
n + · · ·+ φ(a1)x+ φ(a0). (7.5.7)

In other words, (Φ(f))(x) is obtained by applying φ to the coefficients of f(x). Then Φ is
an automorphism of R[x], called the automorphism of R[x] induced by φ. (The proof is not
a big deal but again notationally annoying, so we again omit it.)

Example 7.5.5. Non-examples are sometimes just as illuminating as examples, so here are
two non-examples of homomorphisms. Define two maps φ+ : R → R and φ× : R → R by

φ+(x) = 7x, φ×(x) = x2. (7.5.8)

7.5. HOMOMORPHISMS 149

Now, true to their names, φ+ preserves addition and φ× preserves multiplication, be-
cause

φ+(x+ y) = 7(x+ y) = 7x+ 7y = φ+(x) + φ+(y) (7.5.9)

and
φ×(xy) = (xy)2 = x2y2 = φ×(x)φ×(y). (7.5.10)

However, φ+ isn’t a homomorphism because it doesn’t preserve multiplication. That is,
if we compute both φ+(xy) and φ+(x)φ+(y), we get

φ+(xy) = 7xy, φ+(x)φ+(y) = (7x)(7y) = 49xy. (7.5.11)

Those expressions certainly don’t look equal! But to be truly careful, we should find specific
numbers where Definition 7.5.1 fails. For example, taking x = 2 and y = 3, we get

φ+(2 · 3) = φ+(6) = 42, φ+(2)φ+(3) = (14)(21) = 294, (7.5.12)

which is more conclusive. Similarly, if we compute φ×(x+ y) and φ×(x) + φ×(y), we get

φ×(x+ y) = (x+ y)2 = x2 + 2xy + y2, φ×(x) + φ×(y) = x2 + y2. (7.5.13)

Doesn’t look promising, but again, to be careful, taking x = −1 and y = 4, we get

φ×(−1 + 4) = φ×(3) = 9, φ×(−1) + φ×(4) = 1 + 16 = 17, (7.5.14)

and indeed, φ× doesn’t preserve addition.

Remark 7.5.6. In Example 7.5.5, it may seem excessive that you have to try actual
numbers to make sure that φ+ and φ× aren’t homomorphisms — aren’t (7.5.11) and (7.5.13)
enough? However, the fact is that in certain rings, the maps defined by φ+ and φ× actually
are homomorphisms, even though (7.5.11) and (7.5.13) still hold! See Problem 7.5.3 and
Theorem 8.4.7 for details.

Returning to abstraction, the definition of homomorphism implies the following proper-
ties in a straightforward way.

Theorem 7.5.7. Let R and R′ be rings, with additive identity elements 0 and 0′, and let
φ : R → R′ be a homomorphism. Then φ(0) = 0′, and for all r ∈ R, φ(−r) = −φ(r).

That is to say, homomorphisms must also preserve the additive identity element and
negatives (subtraction).

Proof. Problems 7.5.1 and 7.5.2.

We also have the following less straightforward fundamental property of homomor-
phisms.

Theorem 7.5.8. Let R, R′, and R′′ be rings, and let φ : R → R′ and ρ : R′ → R′′ be
homomorphisms. Then (ρ ◦ φ) : R → R′′ is a homomorphism.

150 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

Proof. Problem 7.5.4.

Our next big idea (Definition 7.5.9) lets us express the idea of two rings being “ab-
stractly the same.” (You may first want to take a quick look at functions in the abstract
(Appendix ??), especially if you’ve never seen that material before; basically you need to
know that bijections are one-to-one correspondences, or in other words, one-to-one and onto
maps, and that a function is a bijection if and only if it has an inverse.)

Definition 7.5.9. An isomorphism is a bijective (one-to-one and onto) homomorphism.
To say that rings R and R′ are isomorphic means that there exists some isomorphism
φ : R → R′.

The point of the existence of an isomorphism φ : R → R′ is that, because φ is a bijective
correspondence and preserves the ring operations, R and R′ are fundamentally the same
algebraic object, just with different names for their elements.

One nonobvious consequence of Definition 7.5.9 is that if φ : R → R′ is an isomorphism,
then the inverse function φ−1 : R′ → R not only exists, by Theorem 1.3.14, but is also itself
a homomorphism:

Theorem 7.5.10. If φ : R → R′ is an isomorphism, then the inverse function φ−1 : R′ → R
is also a homomorphism (and therefore, an isomorphism, since φ−1 is also bijective).

Proof. Problem 7.5.5.

Remark 7.5.11. It should be said that the main point of isomorphisms is not just the
formal defintion, but the underlying idea. The point is, if rings R and R′ are isomorphic,
they have exactly the same identifying features in terms of any algebraic properties that
can be stated abstractly. To give a few examples:

If two rings R and R′ are isomorphic, then:

� R and R′ have the same number of units.

� R is an integral domain if and only if R′ is an integral domain.

� R is a field if and only if R′ is a field.

� R is a PID if and only if R′ is a PID.

Note that the converse of the above statement is not true; that is, it is possible that two
rings share all of the same characteristics listed above (same number of units, etc.) but are
not isomorphic.

Remark 7.5.12. When two rings R and R′ are isomorphic, they are so much the same
that an unfussy algebraist might say that R “is” R′. This is the sense in which we’ll be able
to describe (without proof, for now) “all” finite fields in Section 7.6.

7.5. HOMOMORPHISMS 151

Finally, we’ll need the following idea at a critical moment in the next chapter.

Definition 7.5.13. An automorphism is an isomorphism φ : R → R from a ring to itself.

Before you object that “Yeah, I already know that R is the same ring as R,” the point of
automorphisms of R is that they represent symmetries of R, as illustrated by the following
example.

Example 7.5.14. Let φ : C → C be the operation of complex conjugation, or in other
words, let

φ(a+ bi) = a− bi (7.5.15)

for a, b ∈ R. Then φ is a homomorphism (Problem 7.5.6) and φ inverts itself (i.e., φ(φ(z)) =
z for all z ∈ C), so φ is an isomorphism, and therefore, an automorphism of C.

The following theorem gives an application of automorphisms that generalizes something
may remember from high school algebra (see Example 7.5.16). More immediately, we’ll need
to use Theorem 7.5.15 in Section 8.4.

Theorem 7.5.15. Let R be a ring, let φ : R → R be an automorphism of R, and let

f(x) = anx
n + · · ·+ a1x+ a0 (7.5.16)

be a polynomial with coefficients in R such that φ(ai) = ai for 0 ≤ i ≤ n. For α ∈ R, if
f(α) = 0, then f(φ(α)) = 0.

Example 7.5.16. TakeR = C, let φ : C → C be the automorphism of complex conjugation
(Example 7.5.14), and suppose f(x) = anx

n + · · · + a1x + a0 is a polynomial with real-
valued coefficients. In that case, since φ(ai) = ai for 0 ≤ i ≤ n, Theorem 7.5.15 says that if
a+bi ∈ C is a zero of f(x) (i.e., f(a+bi) = 0), then its complex conjugate φ(a+bi) = a−bi
is also a zero of f(x) (i.e., f(a−bi) = 0). (You may have seen this result before, expressed as
something like “The nonreal zeros of a real polynomial come in complex conjugate pairs.”)

Proof. Suppose f(x) = anx
n + · · · + a1x + a0 and f(α) = 0. Applying φ to both sides of

f(α) = 0, we get

φ(anα
n + · · ·+ a1α+ a0) = φ(0)

φ(anα
n) + · · ·+ φ(a1α) + φ(a0) = φ(0) (*)

φ(an)φ(α)
n + · · ·+ φ(a1)φ(α) + φ(a0) = φ(0) (**)

(7.5.17)

where (*) follows because homomorphisms preserve addition and (**) follows because ho-
momorphisms preserve multiplication. Therefore, since φ(ai) = ai for 0 ≤ i ≤ n and
homomorphisms preserve 0, we have that

f(φ(α)) = anφ(α)
n + · · ·+ a1φ(α) + a0 = 0. (7.5.18)

The theorem follows.

Definition 7.5.17. kernel

Example 7.5.18. substitution kernel

Theorem 7.5.19. first isomorphism theorem.

Proof. Problem 7.5.12.

152 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

Problems

7.5.1. (Proves Theorem 7.5.7) Let R and R′ be rings, with additive identity elements 0 and
0′, and let φ : R → R′ be a homomorphism. Prove that φ(0) = 0′. (Suggestion: Consider
φ(0 + 0).)

7.5.2. (Proves Theorem 7.5.7) Let R and R′ be rings, with additive identity elements 0
and 0′, and let φ : R → R′ be a homomorphism. Prove that if r ∈ R, then φ(−r) = −φ(r).
(Suggestion: Consider φ(r) + φ(−r).)

7.5.3. Define φ : Z/(20) → Z/(20) by the formula

φ(x) = 5x. (7.5.19)

Prove that φ is a homomorphism.

7.5.4. (Proves Theorem 7.5.8) Let R, R′, and R′′ be rings, and let φ : R → R′ and
ρ : R′ → R′′ be homomorphisms. The goal of this problem is to show that the composite
function (ρ ◦ φ) : R → R′′ is also a homomorphism.

(a) Prove that if r, s ∈ R, then (ρ ◦ φ)(r + s) = (ρ ◦ φ)(r) + (ρ ◦ φ)(s).
(b) Prove that if r, s ∈ R, then (ρ ◦ φ)(rs) = (ρ ◦ φ)(r)(ρ ◦ φ)(s).

7.5.5. (Proves Theorem 7.5.10) inverse of isom is isom

7.5.6. Let φ : C → C be the operation of complex conjugation, or in other words, let

φ(a+ bi) = a− bi (7.5.20)

for a, b ∈ R. Prove that φ is a homomorphism. (Suggestion: Use the definition of homo-
morphism.)

7.5.7. Let F be a field in which 1 + 1 = 2 = 0. (One example of such a field is F = F2,
but it turns out that there are many other examples.) Define φ : F → F by

φ(x) = x2 (7.5.21)

for x ∈ F .

(a) Prove that for x, y ∈ F , (x+ y)2 = x2 + y2.

(b) Prove that φ is a homomorphism. (Suggestion: Use the definition of homomorphism.)

7.5.8. Continuing Problem 7.3.4, prove that the rings R1 and R2 are not isomorphic.

7.5.9. Let F be a field of order 8 (i.e., F is a field, and F has 8 elements). Prove that F
is not isomorphic to Z/(8). (Suggestion: What abstract features are there in Z/(8) that
cannot be present in a field?)

7.6. FINITE FIELDS 153

7.5.10. Let F be a field of order 9 (i.e., F is a field, and F has 9 elements). Prove that
F is not isomorphic to Z/(9). (Suggestion: What abstract features are there in Z/(9) that
cannot be present in a field?)

7.5.11. For which m > 1 is Z/(m) a field? Try to prove as much as you can. (Suggestions:
First find examples of m for which Z/(m) is a field; cite specific results that justify your
answer. Also, compare Problems 7.5.9 and 7.5.10 and look for a pattern.)

7.5.12. (Proves Theorem 7.5.19) Proof of first isomorphism theorem.

7.6 Finite fields

This chapter has been building towards describing the key facts about finite fields (Theo-
rems 7.6.5, 7.6.9, 7.6.17, and 7.6.18). When the proofs are short, we give them here; when
the proofs will be short later, we delay them until later; and when the proofs are substantial,
we just state the theorems without proof. In any case, the really important thing is that
you understand the statements of the theorems.

We begin with, what else, more definitions.

Definition 7.6.1. The order of a field F is defined to be the number of elements in F ; a
finite field is therefore the same as a field of finite order. More generally, the order of any
algebraic object is the number of elements it contains.

Definition 7.6.2. Let R be a ring. Since R has a multiplicative identity 1, for a positive
integer n, we can abbreviate

n · 1 = 1 + · · ·+ 1︸ ︷︷ ︸
n times

. (7.6.1)

Then one of two things must happen. Either:

1. n · 1 = 0 for some positive integer n; or

2. n · 1 ̸= 0 for all positive integers n.

In case (1), we define char(R), the characteristic of R to be the smallest positive integer n
such that n · 1 = 0; and in case (2), we define char(R) = 0.

Example 7.6.3. For R = Z/(m), m · 1 = 0, and for 0 < n < m, n · 1 ̸= 0, so char(R) = m.

Example 7.6.4. By reasoning similar to that of Example 7.6.3, Fp[x] has characteristic p,
and by the same argument again, if m(x) ∈ Fp[x] has deg(m(x)) ≥ 1, then Fp[x]/(m(x))
also has characteristic p. This is important because, for example, if R = Fp[α], where α is
a root of m(x), then it is still the case that char(R) = p, which means that it is still true
that p = 0 in R, even though R contains pdeg(m(x)) elements.

Returning to the matter of finite fields, our first point is:

Theorem 7.6.5. Let F be a finite field. Then char(F) = p for some prime p.

154 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

We use the notation of Definition 7.6.2, especially (7.6.1), throughout.

Proof. First, since F is finite, by the pigeonhole principle, there must be some integers
0 < k < n such that k · 1 = n · 1. Cancelling additively, we see that (n− k) · 1 = 0, and so
char(F) ̸= 0.

So suppose F has nonprime characteristic, or in other words, suppose char(F) = n = ab
for some positive integers a, b, n with 1 < a, b < n. Then a ·1 ̸= 0 and b ·1 ̸= 0, but repeated
application of the distributive law yields

(a · 1)(b · 1) = n · 1 = 0. (7.6.2)

But a field cannot contain zero divisors (Theorem 4.2.12); contradiction. It follows that
char(F) must be prime.

The point of Theorem 7.6.5 is that if F is a finite field, then F has a copy of Z/(p), or
really, Fp, sitting inside it. As we’ll see, we can think of this copy of of Fp as a base on
which F can be constructed.

Our next key fact about finite fields has to do with their multiplicative structure. As
usual, we begin with a definition.

Definition 7.6.6. Let F be a field. We use F× to denote the set of all nonzero elements of
F , all of which are units (since F is a field). We therefore call F× the multiplicative group
of F .

You may have noticed the appearance of a new word, group, in Definition 7.6.6. In
Chapter 10, we’ll give an axiomatic definition of groups, much as we did earlier for rings
and fields. For now, however, you can just think of F× as a set, and worry about any other
properties it might have later.

Definition 7.6.7. Let F× be the multiplicative group of the field F , and suppose α ∈ F×.
We define the cyclic subgroup generated by α to be the set

⟨α⟩ = {αn | n ∈ Z} , (7.6.3)

or in other words, the set of all powers of α, positive, negative, or zero. (Note that negative
powers of α make sense, since α is a unit, and therefore, α−1 exists.)

We introduce cyclic subgroups here for use in the following definition.

Definition 7.6.8. Let F× be the multiplicative group of the field F . To say that F× is
cyclic means that there exists some α ∈ F× such that F× = ⟨α⟩, or in other words, such
that every element of F× is some power of α. If F× = ⟨α⟩, we say that α is a primitive
element of F .

We can now state our next fundamental fact about finite fields.

Theorem 7.6.9. If F is a finite field, then its multiplicative group F× is cyclic. In other
words, every finite field contains a primitve element.

7.6. FINITE FIELDS 155

See Section B.4 for a proof. Note that even though Theorem 7.6.9 guarantees the
existence of a primitive element, it doesn’t say how to find such an element; in fact, as of
2023, this is still a wide-open problem (refs?). (For example, recall that back in Section 3.1,
we discussed how the question of whether 2 is primitive in Fp for infinitely many p is still
unresolved.)

For now, we introduce a few ideas that make finding primitive elements (slightly) more
efficient.

Definition 7.6.10. Let F× be the multiplicative group of the field F , and suppose α ∈ F×.
If αn = 1 for some positive integer n, we define the order of α to be the smallest possible n
such that αn = 1. Otherwise, if αn ̸= 1 for all positive integers n, we say that α has infinite
order.

We have the following facts about the order of an element of F×. They follow from
more general facts proven in Section B.4, so we delay their proofs until then.

Theorem 7.6.11. Let F be a field of order n, let F× be the multiplicative group of F , and
suppose α ∈ F×. Then:

1. (Max order means primitive) The order of α is equal to the order of (number of
elements in) ⟨α⟩. It follows that α is primitive if and only if the order of α is equal
to n− 1, the order of F×.

2. (Order of a Power Formula) If k is the order of α, then the order of αm is
k

gcd(k,m)
.

3. (Lagrange’s Theorem) If k is the order of α, then k divides n− 1 (the order of F×).

Because of Theorem 7.6.11, to find primitive elements in a field F with n elements, we
just need to find elements of order n− 1. In fact, because the order of some α ∈ F× must
be a divisor of n− 1, it suffices to show that αd ̸= 1 for all proper divisors of n− 1, cutting
down the computation of powers of α by at least roughly half.

Example 7.6.12. If you think about it, you may find Theorem 7.6.9 surprising even when
F = Fp. For example, take F7 = Z/(7). Because F×

7 = {1, 2, 3,−1,−2,−3} has 6 elements,
Lagrange’s Theorem (Theorem 7.6.11, part (3)) says that the order of any element of F×

7

must divide 6, which means that any element of order > 3 must have order 6, and must
therefore be primitive (Theorem 7.6.11, part (1)).

So let’s find the orders of each of the elements of F×
7 . The elements ±1 are straightfor-

ward: 11 = 1, so 1 has order 1, and no other element has order 1; and (−1)2 = 1, so −1 has
order 2. The other elements take a little more work:

22 = −3 23 = 1 (7.6.4)

32 = 2 33 = −1 (7.6.5)

(−2)2 = −3 (−2)3 = −1 (7.6.6)

(−3)2 = 2 (−3)3 = 1. (7.6.7)

156 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

We therefore see that 23 and (−3)3 are equal to 1, with no smaller power equal to 1, so
2 and (−3) each have order 3. On the other hand, (−2)k and 3k are not equal to 1 for
1 ≤ k ≤ 3, so their orders are greater than 3; as mentioned above, each of those elements
has order 6, and is therefore primitive. So, as predicted by Theorem 7.6.9, F×

7 is cyclic,
generated by either −2 or 3. (Compare Example 3.1.10.)

Example 7.6.13. Once we find a primitive element, we can also use the Order of a Power
Formula (Theorem 7.6.11, part (2)) to find the orders of the elements of F×

7 . For example,
starting with the primitive element 3, we write each element of F×

7 as a power of 3:

31 = 3, 32 = 2 33 = −1

34 = −3 35 = −2 36 = 1.
(7.6.8)

Then applying the Order of a Power Formula, we see that:

� The order of 2 = 32 is
6

gcd(2, 6)
= 3;

� The order of −1 = 33 is
6

gcd(3, 6)
= 2;

� The order of −3 = 34 is
6

gcd(4, 6)
= 3;

And so on.

Example 7.6.14. For a more complicated example of finding and using a primitive element,
let m(x) = x4+x3+x2+x+1, which turns out to be irreducible in F2[x], and let F = F2[α],
where α is a root of m(x). Because m(x) has degree 4, by Notation 7.3.5 and the dicussion
immediately afterwards, F is a field of order 24 = 16 whose elements are the polynomials in
α with coefficients in F2 and degree 3 or less, with reduced form given by the rule m(α) = 0,
or in other words, by the reduction rule

α4 = α3 + α2 + α+ 1 (7.6.9)

and related reductions. (See Example 7.3.6.) By Theorem 7.6.9, we know F has a primitive
element, so let’s try to find that element by trial and error.

Since max order means primitive (Theorem 7.6.11, part 1), we need to find an element
of order 15; and since the divisors of 15 are 1, 3, 5, and 15, by Lagrange’s Theorem (The-
orem 7.6.11, part 3), it’s enough to find an element whose order is strictly greater than 5.
However, beyond that, short of using some pretty sophisticated math (see ??), there isn’t
really anything better to do than to consider a random element β ∈ F× and taking powers
of β until we either find some βn = 1 or show that the order of β is greater than 5.

In an attempt to keep things simple, let’s try α first. Because α, α2, and α3 are all
degree ≤ 3, they’re all reduced, and therefore not equal to 1; it follows that the order of
α is strictly greater than 3. In fact, (7.6.9) gives the reduced form of α4, so it remains to

7.6. FINITE FIELDS 157

compute α5. However, multiplying both sides of (7.6.9) by α and reducing using (7.6.9)
gives

α5 = α4 + α3 + α2 + α = (α3 + α2 + α+ 1) + α3 + α2 + α = 1, (7.6.10)

so α has order 5, and is therefore not primitive. So we need to try another guess.

Trying β = α+ 1 next, we see that β2 = α2 + 1 and β3 = α3 + α2 + α+ 1 have degree
≤ 3, so they’re both reduced (and not equal to 1). Next, we have

β4 = α4 + 1 = (α3 + α2 + α+ 1) + 1 = α3 + α2 + α ̸= 1 (7.6.11)

and

β5 = β4(α+ 1) = α4 + α = α3 + α2 + α+ 1 + α = α3 + α2 + 1 ̸= 1. (7.6.12)

It follows that the order of β is greater than 5, which, by Lagrange’s Theorem, means that
the order of β is 15, and β = α+ 1 is primitive.

Note that the Order of a Power Formula applies here as well, so:

� The order of β2 = α2 + 1 is
15

gcd(2, 15)
= 15;

� The order of β3 = α3 + α2 + α+ 1 is
15

gcd(3, 15)
= 5;

� The order of β4 = α3 + α2 + α is
15

gcd(4, 15)
= 15;

� The order of β5 = α3 + α2 + 1 is
15

gcd(5, 15)
= 3;

and so on.

We also have the following important theoretical consequences of Theorem 7.6.11.

Corollary 7.6.15. Let F be a field of order q. Then every α is a root of the polynomial
xq − x ∈ F [x], and consequently,

xq − x =
∏
α∈F

(x− α). (7.6.13)

Note that the (possibly mysterious) stuff on the right-hand side of (7.6.13) should be
read as “the product of all possible monomials (x−α), where α ranges over all elements of
F .” In fact, (7.6.13) is a pretty remarkable statement even for F = Z/(p); for example, for
F = Z/(7), (7.6.13) says that in F7[x],

x7 − x = x(x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− 6). (7.6.14)

(Try it yourself, probably with the help of a computer.)

158 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

Proof. This is certainly true for α = 0, so suppose α ∈ F×. By Theorem 7.6.11, αk = 1 for
some k such that q − 1 = kd (i.e., some k dividing q − 1), so

αq−1 = (αk)d = 1d = 1. (7.6.15)

Multiplying both sides by α, we see that αq = α.
As for (7.6.13), let

f(x) =
∏
α∈F

(x− α), (7.6.16)

the product of all of the (x − α). By the Factor Theorem (Corollary 3.4.8), (x − α) must
divide xq − x for all α ∈ F , so by Unique Factorization 3.5.12, since the (x − α) are all
distinct irreducibles, f(x) must also divide xq − x. However, since f(x) also has degree q,
we must have that xq − x = cf(x), where c ̸= 0 is a constant polynomial; and since both
xq − x and f(x) have leading coefficient 1, (7.6.13), and the corollary, follow.

Remark 7.6.16. Two points about order that you may find confusing:

1. The word “order” is used in several different ways here: it’s the smallest positive n
such that αn = 1, and it’s also the number of elements in something. Fortunately
those two ideas don’t usually conflict (see Theorem 7.6.11), but the word is certainly
overused.

2. Since F× contains all of the elements of F except 0, if the order of F is n, the order
of F× is n− 1.

In any case, while the first confusion is the fault of mathematicians, and the second confusion
is a fact of nature, there’s not much we can do about either at this point.

The remaining facts about finite fields are deeper in nature.

Theorem 7.6.17. Let F be a finite field of characteristic p. Then F is isomorphic to
Fp[x]/(m(x)) for some irreducible polynomial m(x) ∈ Fp[x].

See Section B.4 for a proof, or at least most of a proof. Note that as a result, the order
of a finite field must be pe for some prime p and some positive integer e. More surprisingly,
something of the reverse is true: There is a unique field of order pe for every prime p and
positive e.

Theorem 7.6.18. Let p be a prime, and let e be a positive integer.

1. There exists at least one field of order pe.

2. If F and K are both finite fields of order pe, then F and K are isomorphic (Defini-
tion 7.5.9).

While a full proof of Theorem 7.6.18 is outside the scope of this book, see Section B.4
for an idea of the proof.

7.6. FINITE FIELDS 159

Definition 7.6.19. Note that since any two fields of order pe are isomorphic, algebraically
we can think of them as being the same; in other words, there is really only one field of any
given order pe. For q = pe (p prime, e ≥ 1), we may therefore define Fq to be “the” field
of order q. This field is also sometimes known as the Galois field of order q, or GF (q) for
short. (Compare Definition 3.2.9.)

Remark 7.6.20. While we have said this already, it again bears repeating that if p is prime,
e > 1, and q = pe, then Fq is not isomorphic to Z/(q). (See Problem 7.5.9.) Instead, by
Theorem 7.6.17, Fq = Fp[x]/(m(x)) for some irreducible polynomial m(x) ∈ Fp[x] such that
degm(x) = e. Note that Theorem 7.6.17 therefore has the highly nonobvious consequence
that for any prime p and positive integer e, there exists at least one irreducible polynomial
m(x) ∈ Fp[x] of degree e.

Well, that was a lot of stuff going on there! So, to summarize the key takeaways about
finite fields:

Five Facts for Finite Fields
1. Prime power: The characteristic (Definition 7.6.2) of a finite field must be

a prime p, and its order must be q = pe for some e ≥ 1.

2. Orders of elements: The multiplicative group of a finite field (Defini-
tion 7.6.6) is cyclic (Definition 7.6.7), or in other words, if F has q elements,
F× must contain at least one primitive element of order q−1. Moreover, every
element of F× must have order dividing q−1, and conversely, for each positive
divisor d of q − 1, F× must contain some element of order d.

3. Magic polynomial: If F is a field of order q, then every α ∈ F is a root
of xq − x, or in other words, αq = α for every α ∈ F . Consequently, xq − x
factors as the product of all (x − β), where β ranges over all elements of F
(including 0 ∈ F).

4. Construction: Every finite field F of characteristic p is isomorphic to
Fp[x]/(m(x)) for some irreducible polynomial m(x). If degm(x) = e and
α is a root of m(x), then the elements of F are the polynomials in α of degree
at most e− 1, with multiplication given by the reduction rule m(α) = 0.

5. Classification: For any prime p and q = pe (e ≥ 1), there exists a field Fq of
order q that is unique up to isomorphism.

Example 7.6.21. Let’s see what the Five Facts tell us about a hypothetical field F of
order q = 1024.

1. (Prime power) There exist fields of order 1024 because 1024 = 210, i.e., p − 2 and
e− 10. Note that by comparison, there are no fields of order 1023, 1025, or 1026.

160 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

2. (Orders of elements) Since q − 1 = 1023, F must contain some primitive element α,
of order 1023. Furthermore, since 1023 = 3 · 11 · 31, the positive divisors of 1023 are
1; 3, 11, 31; 33, 93, 341; and 1023,* so those are exactly the orders of elements of F×.

3. (Magic polynomial) We have that β1024 − β for every β in F . Therefore, if

F = {0, 1, β3, . . . , β1024} , (7.6.17)

then

x1024 − x =
∏
β∈F

(x− β) = x(x− 1)(x− β3) · · · (x− β1024). (7.6.18)

4. (Construction) F is isomorphic to F2[x]/(m(x)), where m(x) is some irreducible
polynomial of degree 10. For example, we could have m(x) = x10 + x3 + 1 or
m(x) = x10 + x4 + x3 + x1 + 1 (two polynomials found by consulting an online
reference).

5. (Classification) F is unique up to isomorphism. For example, the two fields

F2[x]/(x
10 + x3 + 1), F2[x]/(x

10 + x4 + x3 + x1 + 1) (7.6.19)

are isomorphic (!!).

As a look back at where we’ve been and a look ahead at where we’ll go, note that the
Five Facts draw upon much of what we’ve seen in Chapter 7 and also draw on many things
to come. Specifically:

� Prime power: Theorem 7.6.5 plus the Construction fact and Theorem 7.3.2.

� Orders of elements: Theorem 7.6.9 and Theorem 7.6.11 (particularly Lagrange’s
Theorem), proofs in (later? never?).

� Magic polynomial: Corollary 7.6.15.

� Construction: The theory is found in Theorem 7.6.17, proof in (later? never?).
Computational methods for working in Fp[x]/(m(x)) are the main topic of Section 7.3.

� Classification: Theorem 7.6.18, proof in (later? never?).

As we said at the beginning of the chapter: All the pieces matter.

*The products of 0; 1; 2; and 3 of the primes 3, 11, 31, respectively.

7.6. FINITE FIELDS 161

Problems

7.6.1. Find the order (Definition 7.6.10) of each nonzero element of F11. Which elements
are primitive?

7.6.2. Find the order (Definition 7.6.10) of each nonzero element of F13. Which elements
are primitive?

7.6.3. It is a fact that x2 + 1 ∈ F3[x] is irreducible. Let F9 = F3[α], where α is a root of
x2 + 1.

(a) Find a primitive element of F9 by trial and error.

(b) Use the primitive element you found and Theorem 7.6.11 to find the orders of each
nonzero element of F9, as in Example 7.6.13. Which elements are primitive?

7.6.4. It is a fact that x4 + x+1 ∈ F2[x] is irreducible. Let F16 = F2[α], where α is a root
of x4 + x+ 1.

(a) Find a primitive element of F16 by trial and error.

(b) Use the primitive element you found and Theorem 7.6.11 to find the orders of each
nonzero element of F16, as in Example 7.6.13. Which elements are primitive?

7.6.5. It is a fact that x4 + x3 + 1 ∈ F2[x] is irreducible. Let F16 = F2[α], where α is a
root of x4 + x3 + 1.

(a) Find a primitive element of F16 by trial and error.

(b) Use the primitive element you found and Theorem 7.6.11 to find the orders of each
nonzero element of F16, as in Example 7.6.13. Which elements are primitive?

7.6.6. Let m1(x) = x4+x+1 and m2(x) = x4+x3+1 in F2[x]. Write down one particular
isomorphism between the field F1 = F2[x]/(m1(x)) and the field F2 = F2[x]/(m2(x)).

7.6.7. Use Theorem 7.6.11 to explain, without calculation, why every α ∈ F×
8 , except

α = 1, must be primitive. Generalize this idea to Fq for other q = 2e. (Suggestion: This
also works for q = 32 and q = 128.)

7.6.8. By the Five Facts for Finite Fields, there is exactly one field of order 1024 = 210, up
to isomorphism. Let F = F1024 be that field.

(a) What is the largest order of any element of the multiplicative group F×? Explain.

(b) Does F× contain an element of order 32? Explain how you know for sure, one way or
another.

(c) Does F× contain an element of order 31? Explain how you know for sure, one way or
another.

162 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

7.7 Two worked examples: F8 and F16

Since a lot just happened in this chapter, it’s certainly understandable if you find it chal-
lenging to put it all together. To help with that process, this section works out the gory
details of two of the smaller examples of finite fields: the fields of order 8 = 23 and 16 = 24.
Note that since the field of order 2e can be constructed as F2[x]/(m(x)), where m(x) is any
irreducible polynomial in F2[x] of degree e, we start each example by choosing a particular
m(x).

7.7.1 The field F8

Definition. Let m(x) = x3 + x + 1, an irreducible polynomial in F2[x]. We define F8 to
be F2[x]/(m(x)), and we let α be a root of m(x) in F8. (We can also write “F8 = F2[α],
where α is a root of m(x).”)

Elements. By Theorem 7.3.2 and Definition 7.3.4, the elements of F8 can be written as
the polynomials of degree < 3 (that is, degree ≤ 2) in α. That is,

F8 =
{
0, 1, α, α+ 1, α2, α2 + 1, α2 + α, α2 + α+ 1

}
. (7.7.1)

If you’re wondering, where did that list come from, here’s one way to enumerate the poly-
nomials of degree ≤ 2. First, list all the polynomials of degree ≤ 0, i.e., the constant
polynomials:

{0, 1} (7.7.2)

If f(α) is a polynomial of degree ≤ 1, then either f(α) actually has degree ≤ 0, or f(α) has
the form α + g(α), where g(α) has degree ≤ 0. So the list of polynomials of degree ≤ 1 is
(7.7.2), plus the list you get from adding α to everything in (7.7.2):

{0, 1, α, α+ 1} (7.7.3)

To get the polynomials of degree ≤ 2, we start with (7.7.3) and then append the list of
polynomials you get by adding α2 to each of the polynomials in (7.7.3), which gives (7.7.1).

Addition. Addition in F8 is exactly the same as addition in F2[x]; just keep in mind
that 2 = 0 (i.e., F8 has characteristic 2). For example,

(α2 + 1) + (α2 + α+ 1) = 2α2 + α+ 2 = α. (7.7.4)

Reduction table. For multiplication and inverses, we list the consequences of α3+α+1 =
0. That is, since α3 = α+ 1 (remember that +1 = −1!), we have:

α3 = α+ 1, α4 = α2 + α. (7.7.5)

Note that these relations allow us to reduce any polynomial of degree 3 or 4 in α to a
polynomial of degree ≤ 2 in α.

7.7. TWO WORKED EXAMPLES: F8 AND F16 163

Multiplication table. We can use (7.7.5) to construct the following multiplication table
for F8. (For typographical reasons, we use the abbreviation β = α2 + α+ 1.)

· 0 1 α α+ 1 α2 α2 + 1 α2 + α β

0 0 0 0 0 0 0 0 0

1 0 1 α α+ 1 α2 α2 + 1 α2 + α β

α 0 α α2 α2 + α α+ 1 1 β α2 + 1

α+ 1 0 α+ 1 α2 + α α2 + 1 β α2 1 α

α2 0 α2 α+ 1 β α2 + α α α2 + 1 1

α2 + 1 0 α2 + 1 1 α2 α β α+ 1 α2 + α

α2 + α 0 α2 + α β 1 α2 + 1 α+ 1 α α2

β 0 β α2 + 1 α 1 α2 + α α2 α+ 1

But don’t just look at that table! Choose a few entries at random and work them out
yourself. For example,

(α2 + 1)β = α4 + α3 + α2 + α2 + α+ 1

= α4 + α3 + α+ 1 because 2α2 = 0

= (α2 + α) + (α+ 1) + α+ 1 by (7.7.5)

= α2 + α because 3α = α and 2 = 0.

(7.7.6)

Inverses. By Corollary 7.3.7, the inverse of b(α) can be computed by applying Euclidean
Reduction to gcd(b(x),m(x)) for m(x) = x3 + x + 1. For example, to find the inverse of
β = α2 + α+ 1, we take b(x) = x2 + x+ 1 and compute

x3 + x+ 1 = (x+ 1)(x2 + x+ 1) + x

x2 + x+ 1 = (x+ 1)x+ 1.
(7.7.7)

Then keeping in mind that −1 = +1,

x = m(x) + (x+ 1)b(x)

1 = b(x) + (x+ 1)(m(x) + (x+ 1)b(x))

= (1 + (x+ 1)2)b(x) + (x+ 1)m(x).

(7.7.8)

It follows that
β−1 = 1 + (α+ 1)2 = 1 + α2 + 1 = α2. (7.7.9)

You should also check that (α2+α+1)α2 = 1, both directly and in the multiplication table
above.

Primitive elements and orders. By Problem 7.6.7, every element of F8, except 0 and 1,
has order 7, and is therefore primitive.

Log-antilog tables. You may have noticed that in a finite field F , multiplication, and
even more so division, are kind of complicated! So what do you do in practice if you need
to do a lot of computation in F? To be honest, for small examples (e.g., size smaller than

164 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

a few thousand) you work out the multiplication table ahead of time and hard-code it as
a lookup table.� But for larger fields, e.g., order 220, where the lookup table would have
around 240/2 entries, you can use the following smaller lookup table solution.

Definition 7.7.1. Let F be a finite field and let α be a primitive element of F . The antilog
table of F with respect to α is a list of the powers of α in reduced form, and the log table of
F with respect to α is a list of the nonzero elements of F , expressed as powers of α.

Returning to our example, the antilog and log tables of F8 with respect to α are shown
in Table 7.7.1.

Antilog Log

α0 1 1 α0

α1 α α α1

α2 α2 α+ 1 α3

α3 α+ 1 α2 α2

α4 α2 + α α2 + 1 α6

α5 α2 + α+ 1 α2 + α α4

α6 α2 + 1 α2 + α+ 1 α5

Table 7.7.1: Antilog and log tables for F8

The point of making a table like Table 7.7.1 is that we can use it to reduce multiplication
and division in Fq to arithmetic mod q − 1 (since the order of primitive element is q − 1).
For example, if we want to multiply α2 +1 and α2 +α+1, looking at the log table, we can
see that

α2 + 1 = α6, α2 + α+ 1 = α5. (7.7.10)

Therefore, (α2 + 1)(α2 + α+ 1) = α11 = α4, since α has order 7, and therefore, exponents
can all be considered mod 7. From the antilog table, we see that our product is equal to
α2 + α.

Similarly, if we want to find the inverse of α+1, since the log table tells us that α+1 = α3,
we see that

(α+ 1)−1 = α−3 = α4 = α2 + α, (7.7.11)

where the middle equality comes from the fact that α7 = 1, and the last equality comes
from the antilog table. Again, exponents of α are computed mod 7, since, as previously
mentioned, the order of α is 7.

7.7.2 The field F16

Definition. Let m(x) = x4 + x + 1, an irreducible polynomial in F2[x]. We define F16 to
be F2[x]/(m(x)), and we let α be a root of m(x) in F16. (We can also write “F16 = F2[α],
where α is a root of m(x).”)

�Always keep naive and brute force solutions in mind!

7.7. TWO WORKED EXAMPLES: F8 AND F16 165

Elements. By Theorem 7.3.2 and Definition 7.3.4, the elements of F16 can be written as
the polynomials of degree < 4 (that is, degree ≤ 3) in α. Looking back at (7.7.1), we can
get the polynomials of degree ≤ 3 by taking the list in (7.7.1) and adjoining the list you get
from adding α3 to each polynomial in (7.7.1):

F16 =
{
0, 1, α, α+ 1, α2, α2 + 1, α2 + α, α2 + α+ 1,

α3, α3 + 1, α3 + α, α3 + α+ 1,

α3 + α2, α3 + α2 + 1, α3 + α2 + α, α3 + α2 + α+ 1
}
.

(7.7.12)

Addition. As with F8, addition in F16 is exactly the same as addition in F2[x], remem-
bering that 2 = 0, as F16 has characteristic 2.

Reduction table. For multiplication and inverses, we list the consequences of α4+α+1 =
0. That is, since α4 = α+ 1 (again, +1 = −1!), we have:

α4 = α+ 1, α5 = α2 + α, α6 = α3 + α2. (7.7.13)

Note that these relations allow us to reduce any polynomial of degree between 4 and 6 in α
to a polynomial of degree ≤ 3 in α.

Multiplication table. As with F8, we could use (7.7.13) to construct the multiplication
table of F16, but for both typographical reasons and laziness, let’s just do one small piece
of it:

· α3 + α2 + α α3 + α2 + α+ 1

α2 + α+ 1 α3 + α2 α3 + α+ 1

α3 + 1 α2 + α+ 1 α3 + α2 + α

Again, please work out those examples, and other randomly chosen examples, yourself.
Inverses. By Corollary 7.3.7, the inverse of b(α) can be computed by applying Euclidean

Reduction to gcd(b(x),m(x)) for m(x) = x4 + x + 1. For example, to find the inverse of
β = α3 + α+ 1, we take b(x) = x3 + x+ 1 and compute

x4 + x+ 1 = x(x3 + x+ 1) + (x2 + 1)

x3 + x+ 1 = x(x2 + 1) + 1.
(7.7.14)

Then keeping in mind that −1 = +1,

x2 + 1 = m(x) + xb(x)

1 = b(x) + x(m(x) + xb(x))

= (1 + x2)b(x) + xm(x).

(7.7.15)

It follows that
β−1 = α2 + 1. (7.7.16)

You should also check that (α3 + α+ 1)(α2 + 1) = 1 directly.
Primitive elements and orders. By Problems 7.6.4 and 7.6.5 (since all fields of order

16 are isomorphic!), F×
16 has 1 element of order 1 (the element 1), 2 elements of order 3,

166 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

α0 1 α8 α2 + 1
α1 α α9 α3 + α
α2 α2 α10 α2 + α+ 1
α3 α3 α11 α3 + α2 + α
α4 α+ 1 α12 α3 + α2 + α+ 1
α5 α2 + α α13 α3 + α2 + 1
α6 α3 + α2 α14 α3 + 1
α7 α3 + α+ 1

1 α0 α3 + 1 α14

α α1 α3 + α α9

α+ 1 α4 α3 + α+ 1 α7

α2 α2 α3 + α2 α6

α2 + 1 α8 α3 + α2 + 1 α13

α2 + α α5 α3 + α2 + α α11

α2 + α+ 1 α10 α3 + α2 + α+ 1 α12

α3 α3

Table 7.7.2: Antilog and log tables for F16

4 elements of order 5, and 8 elements of order 15. Those last 8 elements are the primitive
elements of F16.

Log-antilog tables. As with F8, by computing the powers of the primitive element α, we
get the log and antilog tables of F16 shown in Table 7.7.2 with respect to α, which reduce
multiplication and division in F16 to addition and subtraction mod 15.

Convention 7.7.2. Note that in the log table portions of Tables 7.7.1 and 7.7.2, polyno-
mials in α are ordered by writing out the coefficients of each polynomial as binary digits
and then listing them in numerical order. For example, in Table 7.7.1, the log table entries
are in the order 001, 010, 011, 100, 101, 110, 111. We call this ordering dictionary order,
and we take that as our standard ordering for log table entries.

Problems

7.7.1. Let F = F2[α], where α is a root of m(x) = x3 + x2 + 1 (an irreducible polynomial
in F2[x]).

(a) Write out the elements of F as polynomials in α.

(b) Write out the multiplication table of F .

(c) Find the inverse of each nonzero element of F .

(d) Write out the antilog and log tables of F with respect to α, keeping the entries of your
log table in dictionary order (Convention 7.7.2).

(e) What is the order of every element of F× except 1? Explain.

7.7. TWO WORKED EXAMPLES: F8 AND F16 167

7.7.2. Let F = F2[α], where α is a root of m(x) = x4 + x3 + 1 (an irreducible polynomial
in F2[x]).

(a) Write out the elements of F× as powers of α, i.e., construct the antilog table of F with
respect to α.

(b) Write out the log table of F with respect to α, keeping the entries of your log table in
dictionary order (Convention 7.7.2).

(c) Use your log and antilog tables to compute (α2+α+1)(α3+α2+1) and (α3+α2)−1.

7.7.3. Let F = F2[α], where α is a root of m(x) = x4 + x + 1 (an irreducible polynomial
in F2[x]), and let β = α+ 1.

(a) Write out the elements of F× as powers of β, i.e., construct the antilog table of F with
respect to β. (In particular, this will show that β is a primitive element of F .)

(b) Write out the log table of F with respect to β, keeping the entries of your log table in
dictionary order (Convention 7.7.2).

(c) Use your log and antilog tables (with respect to β) to compute (α2 + 1)(α3 + α + 1)
and (α3 + α)−1.

7.7.4. Let F = F2[α], where α is a root of m(x) = x5 + x2 + 1 (an irreducible polynomial
in F2[x]).

(a) Write out the elements of F× as powers of α, i.e., construct the antilog table of F with
respect to α.

(b) Write out the log table of F with respect to α, keeping the entries of your table in
dictionary order (Convention 7.7.2).

(c) Use your log and antilog tables to compute (α4+α2)(α3+α+1) and (α4+α3+α2+1)−1.

7.7.5. Let F = F2[α], where α is a root of m(x) = x6 + x + 1 (an irreducible polynomial
in F2[x]).

(a) Write out the elements of F× as powers of α, i.e., construct the antilog table of F with
respect to α.

(b) Write out the log table of F with respect to α, keeping the entries of your table in
dictionary order (Convention 7.7.2).

(c) Use your log and antilog tables to compute (α4+α2)(α3+α+1) and (α4+α3+α2+1)−1.

168 CHAPTER 7. IDEALS, QUOTIENTS, AND FINITE FIELDS

Chapter 8

Stronger: BCH codes

A man got to have a code.

— Omar Little, The Wire

8.1 How to build a better code

When you look at the success of the Hamming 7- and 8-codes (Chapter 6), it’s natural
to ask: Can we do better than that? That is, can we devise binary linear codes that can
somehow correct even more errors than H7 and H8 while also requiring less extra data to
be transmitted?

Before we consider that problem, let’s review the statistics that tell us how good a
binary linear code is. Recall that:

� An [n, k, d] code C is a binary linear code of length n, dimension k, and minimum
distance d. In other words, C is a subspace of Fn

2 , dim C = k as a subspace of Fn
2 , and

the smallest nubmer of 1s appearing in a nonzero codeword of C is d. (See Section 6.4.)

� We would like k/n to be as large as possible, because k/n represents the portion of
each transmitted message that contains useful data.

� Also, since the maximum number of errors that can be corrected in a single transmitted

codeword is

⌊
d− 1

2

⌋
(Theorem 6.4.13), we would like d to be as large as possible.

It follows that to create a good code, we need to:

Motivating Problem 8.1.1. Find [n, k, d] codes where both k and d are as large as
possible, given n.

These goals of large dimension and large minimum distance turn out to have a certain
tension with each other. For example, you can achieve a large minimum distance inefficiently
by just repeating each data bit many times in the [n, 1, n] repetition code, but it would be
more useful to achieve a large minimum distance while also being able to communicate more

169

170 CHAPTER 8. STRONGER: BCH CODES

actual message data per transmitted bit. On the other hand, we have the following class of
examples.

Definition 8.1.2. For an integer r ≥ 2, let n = 2r − 1, and let Hn be the k × n matrix
whose ith column (1 ≤ i ≤ n) is the binary digits of the integer i, written upwards. For
example, for r = 3 and r = 4, we have

H7 =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 ,

H15 =


1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

 .

(8.1.1)

The Hamming n-code Hn is the binary linear code whose parity check matrix is Hn.

The Hamming n-code turns out to have the following [n, k, d] statistics.

Theorem 8.1.3. For an integer r ≥ 2 and n = 2r − 1, the Hamming n-code Hn is an
[n, n− r, 3] code. It follows that we can correct one error in each n-bit transmission.

Proof. The [n, n−r, 3] statement is proved in Problems 8.1.2 and 8.1.3. The fact that we can
correct one error per transmission follows from Theorem 6.4.13; alternatively, Problem 8.1.4
gives an algorithm for correcting one error per transmitted codeword.

Big picture: As n = 2r − 1 gets larger, almost all of what we’re transmitting is actual

data (i.e.,
n− r

r
→ 1), but we can’t correct very many errors (one out of every n = 2r−1 bits

transmitted). Now this might be quite useful — maybe we have a very good but not perfect
transmission channel, so we only need to correct errors very rarely. However, Motivating
Problem 8.1.1 asks: Is it possible to do both somehow? Or at least is it possible to find
some kind of balance besides lots of error correction but very low rate of data transmission
(the [n, 1, n] repetition code) or very high rate of data transmission but very little error
correction (the Hamming code Hn)?

The general Hamming code construction also begs the following question:

Motivating Problem 8.1.4. Find general methods for constructing good codes.

The rest of this chapter describes one such method, the BCH construction. It’s re-
markable (if mabye not surprising, given the previous chapter) that the keys to the BCH
construction are two quite abstract ideas: ideals and finite fields.

Problems

8.1.1. For r = 2 and n = 22 − 1 = 3, what are the codewords in the Hamming 3-code H3?
What is another name for this code that you’ve seen?

8.2. CYCLIC CODES 171

8.1.2. As in Definition 8.1.2, let r be a positive integer, let n = 2r − 1, let Hn be the r× n
matrix whose ith column (1 ≤ i ≤ n) is the binary digits of the integer i, written upwards,
and let Hn be the code with parity check matrix Hn.

(a) Note that H7 and H15 are both already in RREF. Which columns of H7 are pivot
columns? Which columns of H15 are pivot columns?

(b) Now consider an arbitrary positive integer r and n = 2r − 1. Explain why the matrix
Hn is already in RREF.

(c) Prove that the dimension of the Hamming n-code Hn is (2r − 1)− r.

8.1.3. Let r, n, Hn, and Hn be as in Problem 8.1.2.

(a) Prove that Hn has no words of weight 1. (Suggestion: Any word of weight 1 has the
form ei.)

(b) Prove that Hn has no words of weight 2. (Suggestion: Any word of weight 2 has the
form ei + ej for some i ̸= j.)

(c) Prove that Hn always has a word of weight 3. (Suggestion: Find three columsn of Hn

that sum to 0.)

8.1.4. Let r, n, Hn, and Hn be as in Problem 8.1.2. Prove that the error-correction scheme
from Theorem 6.3.4 also works for Hn. (Suggestion: Imitate the proof of Theorem 6.3.4.)

8.2 Cyclic codes

The first key ingredient in the BCH construction is to consider the following class of codes.

Definition 8.2.1. Let C be a binary linear code of length n. To say that C is cyclic means
that it is closed under cyclic permutation of coordinates. That is, to say that C is cyclic

means that if


c0
c1
c2
...

cn−1

 is in C, then so are


cn−1

c0
c1
...

cn−2

,

cn−2

cn−1

c0
...

cn−3

, and so on.

Notation 8.2.2. Later on, starting in Section 8.7, we’ll look at cyclic codes over other
fields (see Section 8.7 if you’re curious about what that means), but for now, when we say
“cyclic code,” we mean “cyclic binary linear code.”

Example 8.2.3. The code

C =



0
0
0
0

 ,


1
1
0
0

 ,


0
1
1
0

 ,


0
0
1
1

 ,


1
0
0
1

 ,


1
0
1
0

 ,


0
1
0
1

 ,


1
1
1
1


 (8.2.1)

172 CHAPTER 8. STRONGER: BCH CODES

is a cyclic code of length 4 and dimension 3. Permuting coordinates cyclically cycles code-
words 2–5, as well as 6 and 7, and fixes codewords 1 and 8. You can also check by brute
force that C is a subspace; in fact, C is precisely the parity check code of length 4.

Example 8.2.4. The code

C =





0
0
0
0
0
0
0


,



1
1
0
1
0
0
0


,



0
1
1
0
1
0
0


,



0
0
1
1
0
1
0


,



0
0
0
1
1
0
1


,



1
0
0
0
1
1
0


,



0
1
0
0
0
1
1


,



1
0
1
0
0
0
1


,



0
0
1
0
1
1
1


,



1
0
0
1
0
1
1


,



1
1
0
0
1
0
1


,



1
1
1
0
0
1
0


,



0
1
1
1
0
0
1


,



1
0
1
1
1
0
0


,



0
1
0
1
1
1
0


,



1
1
1
1
1
1
1




(8.2.2)

is a cyclic code of length 7 and dimension 4. Permuting coordinates cyclically cycles code-
words 2–8, as well as vectors 9–15, and fixes codewords 1 and 16. Again, you can check
by brute force that C is a subspace; in fact, we’ll see that C is variation on the Hamming
7-code H7 (see Example 8.3.6).

The symmetry condition in Definition 8.2.1 is reasonably natural, as it is often the case
that “good” codes are more symmetric than usual. However, the really useful thing about
cyclic codes can be seen by writing codewords using the following notation.

Notation 8.2.5. The polynomial notation for vectors in Fn
2 represents the vector

 c0
...

cn−1


as the polynomial

c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 (8.2.3)

in the ring R = F2[x]/(x
n − 1) (i.e., setting xn ≡ 1).

Note that in R = F2[x]/(x
n − 1), addition of polynomials and multiplication of a poly-

nomial by a scalar both work exactly like they do for the corresponding vectors. What
makes the polynomial notation useful is that if

c(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 (8.2.4)

is a codeword, then since xn ≡ 1 in R, we have that

xc(x) = c0x+ c1x
2 + c2x

3 + · · ·+ cn−2x
n−1 + cn−1x

n

= cn−1 + c0x+ c1x
2 + c2x

3 + · · ·+ cn−2x
n−1,

(8.2.5)

8.3. CYCLIC CODES AND GENERATOR POLYNOMIALS 173

which is precisely the (one-step) cyclic permutation of the coordinates of c(x). Similarly,
x2c(x) cyclically permutes the coordinates of c(x) by two steps, and in general, xkc(x)
cyclically permutes the coordinates of c(x) by k steps. As we’ll see momentarily, that
means that cyclic codes can be characterized algebraically in terms of ideals. (Surprise!)

Notation 8.2.6. Note that for the ring F2[x]/(x
n − 1), instead of using the α notation

(Notation 7.3.5) established earlier, we’ll continue to refer to elements of F2[x]/(x
n − 1) as

polynomials f(x) in x, with the understanding that xn = 1. The reason is that we will later
need to plug elements of some Fq = F2[α] into these polynomials f(x).

Theorem 8.2.7. Let C be a binary linear code of length n. In polynomial notation, C is
cyclic if and only if it is an ideal of the ring F2[x]/(x

n − 1).

Proof. On the one hand, suppose C is an ideal of F2[x]/(x
n − 1). Since C is closed under

multiplication by x ∈ F2[x]/(x
n − 1), by the previous discussion if c(x) ∈ C, so are all of its

cyclic permutations xkc(x). It follows that C is cyclic.

For the converse, see Problem 8.2.1.

Problems

8.2.1. Suppose C is a cyclic code of length n over F2. We continue to use the polynomial
notation (Notation 8.2.5) and think of Fn

2 as F2[x]/(x
n − 1). The goal of this problem is to

prove that (explain why) C is an ideal (Definition 7.1.1) of F2[x]/(x
n − 1).

(a) Explain why C contains zero, is closed under addition, and is closed under scalar
multiplication by elements of F2.

(b) Suppose c(x) ∈ C. Explain why xc(x) ∈ C.
(c) Suppose c(x) ∈ C. For a, b ∈ F2, explain why (ax+ bx2)c(x) ∈ C.
(d) Suppose c(x) ∈ C and

f(x) = a0 + a1x
1 + · · ·+ akx

k (8.2.6)

is an element of F2[x]. Explain why f(x)c(x) ∈ C.

8.3 Cyclic codes and generator polynomials

Returning to cyclic codes, we first have the following variation on Theorem 7.4.2.

Theorem 8.3.1. Fix a positive integer n, and let C be a nonzero cyclic code of length n,
i.e., let C be a nonzero ideal of R = F2[x]/(x

n − 1). Then C is principal, or in other words,
C = (g(x)) for some g(x) ∈ F2[x]. Moreover, we can choose g(x) so that g(x) divides xn−1.

Again, when we say that C = (g(x)), we’re using g(x) as an abbreviation for g(x) + I0,
where I0 = (xn − 1).

174 CHAPTER 8. STRONGER: BCH CODES

Proof. Let I0 = (xn − 1), so elements of R have the form f(x) + I0 for some f(x) ∈ F2[x];
and let

I = {f(x) ∈ F2[x] | f(x) + I ∈ C} . (8.3.1)

Then we can use the definition of R = F2[x]/I0 and the fact that C is an ideal of R to show
that I is an ideal of F2[x] containing I0; see Problem 8.3.1 for details.

In any case, since I is an ideal of the PID F2[x], I = (g(x)) for some g(x) ∈ F2[x],
and reducing mod I0, we see that C = (g(x) + I0), which we abbreviate as C = (g(x)).
Furthermore, since xn − 1 ∈ I0 ⊆ I, g(x) divides xn − 1, and the theorem follows.

Definition 8.3.2. Let C be a cyclic code of length n. We define the generator polynomial
of C to be the minimal polynomial g(x) of C, as described in Theorem 8.3.1.

Therefore, if we want to study the cyclic codes of length n, it suffices to consider each
possible factor g(x) of xn − 1 over F2 and study the corresponding principal ideals (g(x)).
Still easier said than done! But at least this considerably limits the kind of example we
need to look at.

Before we turn to one particular method of making good cyclic codes (Sections 8.4–
8.8), we first establish some facts that hold for cyclic codes in general, beginning with the
dimension of a cyclic code.

Theorem 8.3.3. Let C be a cyclic code of length n generated by the divisor g(x) ∈ F2[x] of
xn − 1. If deg g(x) = r, then the set

B =
{
g(x), xg(x), . . . , x(n−1)−rg(x)

}
(8.3.2)

is a basis for C. Consequently, the dimension of C is k = n− r.

Proof. We first show that B is linearly independent. Let

g(x) = c0 + c1x+ · · ·+ cr−1x
r−1 + xr, (8.3.3)

where the coefficient of xr must be 1 because deg g(x) = r. Then if G is the matrix whose
columns are B in ordinary vector form, we have

G =



c0 0 0 · · · 0
c1 c0 0 · · · 0
c2 c1 c0 · · · 0
...

...
... · · ·

...
1 cr−1 cr−2 · · · 0
0 1 cr−1 · · · c0
0 0 1 · · · c1
...

...
... · · ·

...
0 0 0 · · · 1


, (8.3.4)

8.3. CYCLIC CODES AND GENERATOR POLYNOMIALS 175

where the lower right-hand entry corresponds to the term xn−1 in x(n−1)−rg(x). We see
that G is a matrix in REF in which every column is a leading column, and it follows that
Gx = 0 has x = 0 as its only solution, or in other words, that B is linearly independent.

To see why B spans C, see Problem 8.3.3.

Encoding and reading an error-free transmission are then straightforward:

� To encode a message m =

 m0

...
mn−r−1

, we write m in polynomial notation as

m(x) = m0 +m1x+ · · ·+mn−r−1x
n−r−1 (8.3.5)

and transmit the codeword

m(x)g(x) = m0g(x) +m1xg(x) + · · ·+mn−r−1x
n−r−1g(x). (8.3.6)

� Conversely, to read a received codeword y(x) that has had no errors in transmission,
we use polynomial division to recover

m(x) = y(x)/g(x). (8.3.7)

Note that if g(x) does not divide y(x), then y(x) is not an element of C = (g(x)), and
an error must have occurred in transmission.

Of course, as is always the case with error-correcting codes (compare Section 6.2), ac-
tually correcting errors is more difficult, and the error-correcting procedures we use very
much depend on the details of the different examples we consider.

We end this section by looking at a few examples of cyclic codes; see Problems 8.3.6–8.3.7
for some more examples.

Example 8.3.4 (Parity check as cyclic). For n ∈ N, note that

xn − 1 = (x− 1)(1 + x+ · · ·+ xn−1) (8.3.8)

in F2[x]. Let C be the cyclic code of length n generated by the divisor 1 + x (which is
the same as x − 1 with coefficients (mod 2)). Then C is precisely the parity check code of
length n from Example 6.2.8 (see Problem 8.3.4). In particular, when n = 4, the polynomial
multiples of x+ 1 of degree ≤ 3 are precisely

0(x+ 1) = 0 1(x+ 1) = x+ 1

x(x+ 1) = x2 + x (x+ 1)(x+ 1) = x2 + 1

x2(x+ 1) = x3 + x2 (x2 + 1)(x+ 1) = x3 + x2 + x+ 1

(x2 + x)(x+ 1) = x3 + x (x2 + x+ 1)(x+ 1) = x3 + 1.

(8.3.9)

If you compare Example 8.2.3, you’ll see that the polynomials appearing on the right-
hand sides of (8.3.9) are precisely the same as the codewords in (8.2.1), but in polynomial
notation.

176 CHAPTER 8. STRONGER: BCH CODES

Example 8.3.5 (Repetition as cyclic). Let C be the cyclic code of length n generated by
(1+x+ · · ·+xn−1). Then C is precisely the repetition code of length n from Example 6.2.9;
see Problem 8.3.5.

Example 8.3.6 (H7 as cyclic). Let C be the cyclic code of length 7 over F2 generated by
1+ x+ x3. We now show that, after a change of coordinates, C is the Hamming 7-code H7.

First, following the proof of Theorem 8.3.3, we see that

G =



1 0 0 0
1 1 0 0
0 1 1 0
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1


(8.3.10)

is a generator matrix for C. See Example 8.2.4 for a list of the actual codewords of C; note
that the basis for C given in (8.3.10) appears as vectors 2–5 in (8.2.2).

Next, we claim that

H =

1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

 (8.3.11)

is a parity check matrix for C. While it may be unclear how H was derived, the fact that
HG is the zero matrix (check this for yourself!) and rankH = 3 = 7 − 4 means that the
columns of G are a basis for Null(H), which must therefore be C.

We then observe that the columns of H are the binary digits (written backwards)
of 3, 6, 7, 5, 1, 2, 4, respectively. It follows that C is the Hamming 7-code, but with bits
x1, . . . , x7 moved to positions 5, 6, 1, 7, 4, 2, 3, respectively.

Example 8.3.7 (Hn as cyclic). Similarly, for an integer r ≥ 2 and n = 2r − 1, it turns out
that if g(x) ∈ F2[x] is an irreducible polynomial of degree r, then the cyclic code generated
by g(x) can be renumbered to be the Hamming code Hn. See Problem 8.3.8 for a proof.

Example 8.3.8. The cyclic code of length 23 generated by

g(x) = x11 + x9 + x7 + x6 + x5 + x+ 1 (8.3.12)

turns out to be a [23, 12, 7] code called the Golay 23-code. For an explanation of where g(x)
comes from, see Example 8.5.9; or for much more about the Golay 23-code, MacWilliams
and Sloane Ch. 16 and 20.

Examples 8.3.6 and 8.3.8 certainly show that it is possible to find good cyclic codes.
The rest of this chapter is therefore devoted to a solution to the following problem:

Motivating Problem 8.3.9. How can we choose n ∈ N and g(x) ∈ F2[x] dividing xn − 1
so that the cyclic code C generated by g(x) has both a relatively large dimension and a
large minimum distance?

8.3. CYCLIC CODES AND GENERATOR POLYNOMIALS 177

Problems

8.3.1. (Proves Theorem 8.3.1)

Let R be a ring, let I0 be an ideal of R, let J be an ideal of R/I0, and let

I = {r ∈ R | r + I0 ∈ J} . (8.3.13)

Prove that I is an ideal of R containing I0, as follows.

(a) Explain why 0 ∈ I.

(b) Suppose a ∈ I0. Explain why a ∈ I.

(c) Suppose a, b ∈ I. Explain why a+ b ∈ I.

(d) Suppose a ∈ I and r ∈ R. Explain why ra ∈ I.

(Suggestion for all parts: Since J is an ideal of R/I0, how do the three axiomatic properties
of ideals translate into properties of J inside R/I0?)

8.3.2. Let C be the cyclic code of length 9 generated by x5+x4+1, or in other words, let C
be the principal ideal (x5 + x4 + 1). Find the generating polynomial (minimal polynomial)
g(x) of C. (Suggestion: Note that by Theorem 8.3.1, g(x) must divide both x5+x4+1 and
x9 − 1.)

8.3.3. (Proves Theorem 8.3.3) Let C be a cyclic code of length n generated by the divisor
g(x) ∈ F2[x] of x

n − 1, and suppose that deg g(x) = r. Let

B =
{
g(x), xg(x), . . . , x(n−1)−rg(x)

}
, (8.3.14)

and suppose f(x) ∈ C. Since we are working mod (xn−1), we may assume that deg f ≤ n−1.

(a) Explain why it must be the case that f(x) = q(x)g(x) for some polynomial q(x) of
degree at most (n− 1)− r.

(b) Prove that f(x) is a linear combination of the elements of B.

8.3.4. Let C be the cyclic code of length n generated by 1 + x.

(a) Write out the generator matrix of C, as in the proof of Theorem 8.3.3. What is the
dimension of C?

(b) Prove that each basis element from part (a) is a codeword of the parity check code of
length n (Example 6.2.8). (Since the two codes have the same dimension, it follows
that they must be equal.)

8.3.5. Let C be the cyclic code of length n generated by 1 + x+ · · ·+ xn−1.

(a) Write out the generator matrix of C, as in the proof of Theorem 8.3.3. What is the
dimension of C?

178 CHAPTER 8. STRONGER: BCH CODES

(b) Prove that each basis element from part (a) is a codeword of the repetition code of
length n (Example 6.2.9). (Since the two codes have the same dimension, it follows
that they must be equal.)

8.3.6. Let C be the cyclic code of length 8 generated by 1 + x+ x4 + x5.

(a) Write out the generator matrix of C, as in the proof of Theorem 8.3.3. What is the
dimension of C?

(b) Find the minimum distance of C, i.e., the smallest number of 1s in any nonzero code-
word of C. How many errors does C correct? How many does it detect? Briefly
explain.

8.3.7. Let C be the cyclic code of length 9 generated by 1 + x3 + x6.

(a) Write out the generator matrix of C, as in the proof of Theorem 8.3.3. What is the
dimension of C?

(b) Find the minimum distance of C, i.e., the smallest number of 1s in any nonzero code-
word of C. How many errors does C correct? How many does it detect? Briefly
explain.

8.3.8. (proof using finite fields).

8.4 Minimal polynomials

To be able to state, let alone explain, our theorem that will give one solution to Motivating
Problem 8.3.9, we need the following definition.

Definition 8.4.1. An extension field, or if the context is clear, simply an extension, of a
field F is a field E that contains F as a subfield (i.e., a subset of E that is itself a field,
using the same operations of + and ·). In particular, a finite extension of a finite field Fq

is an extension E of Fq such that E itself is a finite field.

For a silly example, every field is an extension of itself. For some less silly examples,
the complex numbers C are an extension of the real numbers R, and by the Five Facts for
Finite Fields, every field of characteristic 2 is an extension of F2.

Definition 8.4.2. Let E be an extension field of the field F , and suppose f(x) ∈ F [x].
Note that f(x) is also a polynomial with coefficients in E, which means that f(x) can be
factored either in F [x] or in E[x]. To distinguish between these ideas, we use the term
factoring over F to mean f(x) = g(x)h(x) with g(x), h(x) ∈ F [x], and factoring over E to
mean f(x) = g(x)h(x) with g(x), h(x) ∈ E[x]. The terms irreducible over F and irreducible
over E are defined similarly.

Example 8.4.3. As you may remember from precalculus, the polynomial x2 + 1 is irre-
ducible over R, but factors as x2 + 1 = (x+ i)(x− i) over C.

8.4. MINIMAL POLYNOMIALS 179

Example 8.4.4. The polynomial x3 + x + 1 is irreducible over F2, but if α is a root of
x3 + x+ 1 in F8, then

x3 + x+ 1 = (x− α)(x− α2)(x− α4) (8.4.1)

over F8. (Try expanding (8.4.1) yourself; see Problem 8.4.1.) In a minute, we’ll see where
the form of this factorization comes from.

Returning to our main thread, we may now state the theorem that makes the subsequent
material in this section useful.

Theorem 8.4.5. Let C be a cyclic code of length n generated by the divisor g(x) ∈ F2[x] of
xn − 1. Suppose E is an extension of F2 such that for some δ ∈ N and some α ∈ E with
the order of α exactly equal to n, we have that

0 = g(α) = g(α2) = g(α3) = · · · = g(αδ−1). (8.4.2)

Then the minimum distance d of C is at least δ, i.e., d ≥ δ.

In other words, if we can find a generator polynomial g(x) for a cyclic code C of length
n that has roots of the form α, α2, α3, . . . , then C has a large minimum distance, and can
therefore correct more errors (see Theorem 6.4.13). On the other hand, by Theorem 8.3.3,
the smaller the degree of g(x), the larger the dimension of C, and the more data bits that
can be transmitted inside each codeword of length n (see Motivating Problem 8.1.1).

We are therefore motivated to solve the following problem.

Motivating Problem 8.4.6. Let E be an extension of F2, and suppose α ∈ E× has order
n. Find g(x) ∈ F2[x] of smallest possible degree such that g(x) divides xn − 1 and

0 = g(α) = g(α2) = · · · = g(αδ−1) (8.4.3)

for as large a value of δ as possible.

To solve Motivating Problem 8.4.6, we’ll need a few more facts about finite fields beyond
those from Section 7.6. (You should also review the Five Facts for Finite Fields.)

Theorem 8.4.7. Let E be a finite extension of F2, and define a function ρ : E → E by the
formula

ρ(β) = β2. (8.4.4)

1. If E is a finite extension of F2, then β ∈ E is a root of x2 − x if and only if β ∈ F2.

2. The map ρ is an automorphism of E. Furthermore, ρ fixes exactly the subfield F2; in
other words, for β ∈ E, ρ(β) = β if and only if β ∈ F2.

180 CHAPTER 8. STRONGER: BCH CODES

Proof. On the one hand, each of 0 and 1 is a root of x2 − x, and on the other hand, x2 − x
can have at most two roots, so those roots must be precisely the subfield F2 = {0, 1} of E.

For (2), by Theorem 7.6.17 and the discussion immediately afterwards, we know that
E must have order 2e for some e ∈ N, which means that for any β ∈ E, β2e = β (Corol-
lary 7.6.15). Therefore, for any β ∈ E,

ρe(β) = β2e = β, (8.4.5)

and so ρe is the identity function, implying that ρ is a bijection. Furthermore, the statement
that ρ fixes exactly F2 follows directly from part (1) of the theorem.

So it remains to show that ρ is a homomorphism. Certainly (β1β2)
2 = β2

1β
2
2 , so we

just have to show that (β1 + β2)
2 = β2

1 + β2
2 . However, since F2 is a subfield of E, the

characteristic of E is 2, so

(β1 + β2)
2 = β2

1 + 2β1β2 + β2
2 = β2

1 + β2
2 . (8.4.6)

The theorem follows.

Definition 8.4.8. The function ρ(β) = β2 defined in Theorem 8.4.7 is called a Frobenius
automorphism.*

Turning to the problem of finding a “smallest” g(x) such that g(β) = 0, the following
theorem makes the idea of “smallest” precise.

Theorem 8.4.9. Let E be an extension of F2, fix some β ∈ E, and let

I = {f(x) ∈ F2[x] | f(β) = 0} . (8.4.7)

Then I is an ideal of F2[x], and consequently, I = (m(x)) for some m(x) ∈ F2[x].

In other words, f(β) = 0 exactly when (if and only if) f(x) is a multiple of m(x).

Proof. Problem 8.4.3 shows that I is an ideal, and the last assertion follows because every
idea of F2[x] is principal (Theorem 7.4.2).

Definition 8.4.10. We call the polynomial m(x) ∈ F2[x] in Theorem 8.4.9 the minimal
polynomial of β over F2.

By Theorem 8.3.3, to maximize the dimension of a cyclic code, we want a generator
polynomial of as small a degree as possible, which means that we’ll want to choose a
generator that is a least common multiple of minimal polynomials. It will therefore be
useful to establish the following notation for minimal polynomials.

Notation 8.4.11. If E is an extension of F2, and we fix an element α ∈ E, then mi(x)
denotes the minimal polynomial of αi over F2.

*You might be wondering, why make up this separate fancy name, when we could just call this “squaring”?
The answer is that ρ generalizes to other fields, and specifically, other extensions of fields; see (blah).

8.4. MINIMAL POLYNOMIALS 181

We can compute mi(x) efficiently using the following idea.

Definition 8.4.12. Let E be an extension of F2, let β be an element of E, and define

βn = ρn(β). (8.4.8)

In other words, let βn be the result of applying ρ to β n times, e.g., β3 = ρ(ρ(ρ(β))). The
Frobenius orbit of β is the set

{β0 = β, β1, β2, . . . } . (8.4.9)

Note that since some finite power of ρ is the identity, every Frobenius orbit is finite.

Theorem 8.4.13 (Orbit Theorem). Let E be an extension of F2, let β be in E×, and
suppose the Frobenius orbit of β is {β0, . . . , βs−1}, where βk = ρk(β) and ρs(β) = β. Then
the minimal polynomial of β over F2 is

m(x) = (x− β0)(x− β1) . . . (x− βs−1). (8.4.10)

Furthermore, if β has order n, then m(x) divides xn − 1.

The “symmetrizing” idea of Theorem 8.4.13 is closely related to the fact that, for ex-
ample, the complex roots of a real polynomial come in conjugate pairs; see Example 7.5.16.

Proof. First, we need to show that the polynomial m(x), which looks like it might have
coefficients in the bigger field E, is actually in F2[x]. Let Φ : E[x] → E[x] be the auto-
morphism induced by applying the automorphism ρ : E → E to the coefficients of each
f(x) ∈ E[x] (Example 7.5.4). Then

Φ(m(x)) = Φ((x− β0)(x− β1) . . . (x− βs−2)(x− βs−1))

= (x− ρ(β0)(x− ρ(β1)) . . . (x− ρ(βs−2))(x− ρ(βs−1))

= (x− β1)(x− β2) . . . (x− βs−1)(x− β0)

= m(x).

(8.4.11)

Therefore, by Theorem 8.4.7(2), the coefficients of m(x) are actually in F2, and not just in
E; in other words, m(x) ∈ F2[x].

So now, as in Theorem 8.4.9, let

I = {f(x) ∈ F2[x] | f(β) = 0} . (8.4.12)

On the one hand, since m(β) = m(β0) = 0, we see that m(x) ∈ I, which means that the
ideal (m(x)) is contained in I, as I is closed under taking F2[x]-scalar multiples.

On the other hand, suppose f(x) ∈ I, or in other words, suppose that

f(x) = a0 + a1x+ · · ·+ akx
k ∈ F2[x] (8.4.13)

and f(β) = 0. Since ρ fixes F2, by Theorem 7.5.15,

f(β1) = f(ρ(β)) = 0. (8.4.14)

182 CHAPTER 8. STRONGER: BCH CODES

Repeating this process, we see that f(βi) = 0 for 0 ≤ i ≤ s − 1, which means that m(x)
divides f(x), by the Root Theorem. It follows that I is contained in (m(x)).

Finally, since βn − 1 = 0, xn − 1 is in I, which means that xn − 1 is a multiple of the
minimal polynmomial m(x). The theorem follows.

Remark 8.4.14. Note that if elements αi, αj ∈ E are in the same Frobenius orbit, then
the corresponding products of the form in (8.4.10) will contain the same factors, just in a
different cyclic order. It follows from Theorem 8.4.13 that:

Elements αi, αj in the same Frobenius orbit have the same minimal polynomials
mi(x) = mj(x).

Example 8.4.15. Consider the extension E = F8 of F2, and let α be a primitive root of
E. To compute the Frobenius orbit of αi, we start with αi and square what we have until
we get back to αi, keeping in mind that α7 = 1. So the Frobenius orbit of α1 is

O1 =
{
α1, α2, α4

}
,

because when we get to α8, we return to α8 = α1. Note that O1 is also the Frobenius orbit
of α2 and α4. Putting that together with Theorem 8.4.13 and Remark 8.4.14, we see that

m1(x) = m2(x) = m4(x) = (x− α)(x− α2)(x− α4). (8.4.15)

See Problem 8.4.1 for what m1(x) looks like as a polynomial in F2[x].

Similarly, the Frobenius orbit of α3 is

O1 =
{
α3, α6, α5

}
, (8.4.16)

and

m3(x) = m5(x) = m6(x) = (x− α3)(x− α5)(x− α6). (8.4.17)

Example 8.4.16. For a bigger example, let q = 212 = 4096, consider the extension E = Fq

of F2, let β be a primitive root of E (of order 4095), and let α = β105. By the Order of a
Power Formula (Theorem 7.6.11), the order of α is 4095/105 = 39, which is all we need to
know to compute the Frobenius orbits of αi.

First, using the facts that α64 = α25, α44 = α5, and α40 = α (i.e., exponents are
computed mod 39), we have

O1 =
{
α1, α2, α4, α8, α16, α32, α25, α11, α22, α5, α10, α20

}
. (8.4.18)

To avoid writing α over and over, we can just write the exponents and omit α, and rewrite
(8.4.18) as

O1 = {1, 2, 4, 8, 16, 32, 25, 11, 22, 5, 10, 20} . (8.4.19)

8.4. MINIMAL POLYNOMIALS 183

In fact, in this notation, we can think of computing Frobenius orbits as “doubling mod the
order of α.” In the same notation, we also have

O3 = {3, 6, 12, 24, 9, 18, 36, 33, 27, 15, 30, 21} ,
O7 = {7, 14, 28, 17, 34, 29, 19, 38, 37, 35, 31, 23} ,
O13 = {13, 26} .

(8.4.20)

Applying Theorem 8.4.13, we see that

m1(x) = (x− α1)(x− α2)(x− α4)(x− α8)(x− α16)(x− α32)

(x− α25)(x− α11)(x− α22)(x− α5)(x− α10)(x− α20),
(8.4.21)

and m3(x),m7(x),m13(x) can be obtained similarly. To express m1(x) explicitly as a poly-
nomial in F2[x], though, we need to do two things: One, choose a particular irreducible
polynomial of degree 12 to construct Fq; and two, resort to machine calculation, because
who wants to use pencil and paper to expand a polynomial of degree 12 with coefficients in
a finite field?

So let Fq = F2[β], where β is a root of m(x) = x12 + x6 + x4 + x + 1. By (original
source??) (i.e., you can look it up on the internet), m(x) is irreducible and β is a primitive
element of Fq, so we can indeed take α = β105. A computation in the SageMath system,
similar to the computations in Problem 8.4.1 but a whole lot longer, shows that

m1(x) = x12 + x10 + x9 + x8 + x7 + x3 + x2 + x+ 1. (8.4.22)

Alternatively, we could let Fq = F2[β], where β is a root of m(x) = x12 + x11 + x10 +
x8 + x6 + x4 + x3 + x1 + 1, and let α = β105. Again, m(x) is irreducible and β is primitive,
but this time, we get (thanks again SageMath!)

m1(x) = x12 + x11 + x10 + x9 + x5 + x4 + x3 + x2 + 1. (8.4.23)

So the expression of m1(x) in F2[x] depends on how we choose to define Fq. However, let’s
not lose sight of the remarkable thing about both (8.4.22) and (8.4.23): As predicted by
the Orbit Theorem 8.4.13, somehow all of those factors of α = β105 in (8.4.21) cancel each
other out, leaving only coefficients of 1 and 0. Huh!

Remark 8.4.17. Note that on the one hand, Examples 8.4.15 and 8.4.16 show that to find
the minimal polynomial mi(x) of αi in terms of α, you only need to know the order of α;
see also Problems 8.4.6 and 8.4.7. On the other hand, those same examples show that to
find mi(x) as an element of F2[x], you need a specific construction of Fq and a choice of an
element of the appropriate order inside Fq; see also Problem 8.4.1.

Finally, if you think you noticed a pattern in the sizes of the orbits in Examples 8.4.15
and 8.4.16, you’re right. To be precise, we have the following result, which may save you
some time in computing Frobenius orbits, or at least prevent you from going too far down
the rabbit hole after making a computational error.

Theorem 8.4.18. Let q = 2e, and let α be a nonzero element of Fq. Then the size of
(number of elements in) the Frobenius orbit of α divides e.

Theorem 8.4.18 will be proven later, in Section ??.

184 CHAPTER 8. STRONGER: BCH CODES

Problems

8.4.1. Recall that any nonzero element α of F8 has order 7 (Problem 7.6.7). This problem
shows that even though Example 8.4.15 determines the minimal polynomial m1(x) in terms
of α, you can get actually different versions of m1(x) as a polynomial in F2[x].

(a) Let α be an element of F8 such that α3+α+1 = 0. Verify by direct computation that

(x− α)(x− α2)(x− α4) = x3 + x+ 1. (8.4.24)

(b) Let β be an element of F8 such that β3 + β2 + 1 = 0. Verify by direct computation
that

(x− β)(x− β2)(x− β4) = x3 + x2 + 1. (8.4.25)

8.4.2. prove Frobenius map is a homomorphism for q.

8.4.3. Let E be an extension of F2, fix some β ∈ E, and let

I = {f(x) ∈ F2[x] | f(β) = 0} . (8.4.26)

This problem proves that I is an ideal in F2[x]. Note that 0 ∈ I because plugging anything
into the zero polynomial gives 0. As for the other parts of the definition of ideal:

(a) Prove that I is closed under addition. (Suggestion: What does it mean to say that
f1(x), f2(x) ∈ I?)

(b) Prove that I is closed under multiplication by h(x) ∈ F2[x].

8.4.4. Consider the extension E = F256 of F2, and let α be a primitive root of E. Find
the product formulas for m1(x), . . . ,m5(x), as in Example 8.4.15.

8.4.5. Consider the extension E = F512 of F2, and let α be a primitive root of E. Find
the product formulas for m1(x), . . . ,m5(x), as in Example 8.4.15.

8.4.6. Let q = 2e for some e ≥ 1, and let α be an element of F×
q of order 47. Find the

product formulas for m1(x), . . . ,m5(x), as in Example 8.4.15.

8.4.7. Let q = 2e for some e ≥ 1, and let α be an element of F×
q of order 55. Find the

product formulas for m1(x), . . . ,m5(x), as in Example 8.4.15.

8.5 BCH codes

The BCH Theorem, named after its discoverers Bose and Chaudhuri [citation?], and in-
dependently, Hocquenghem [citation?], provides a method for constructing a code with a
guaranteed desired minimum distance.

8.5. BCH CODES 185

Theorem 8.5.1 (BCH Theorem). Let C be a cyclic code of length n generated by the divisor
g(x) ∈ F2[x] of x

n − 1. Suppose E is an extension of F2 such that for some δ ∈ N and
some α ∈ E with the order of α exactly equal to n, we have that

0 = g(α) = g(α2) = g(α3) = · · · = g(αδ−1). (8.5.1)

Then the minimum distance d of C is at least δ, i.e., d ≥ δ.

Definition 8.5.2. A code of the form described by Theorem 8.5.1 is called a BCH code. If
C is a BCH code, we call the quantity δ in Theorem 8.5.1 the designed distance of C, because
while the theorem assures us that d ≥ δ, it may actually be the fact that d > δ, i.e., our
code actually turns out to be better than intended (see Example 8.5.6 for an example).

We can now describe the following recipe for building BCH codes.

Algorithm 8.5.3 (Constructing a BCH code). The following recipe constructs a BCH code
C over F2.

1. Choose an extension E of F2, and let 2e be the order of E.

2. Choose α ∈ E, and let n be the order of α. (Note that n = 2e − 1 exactly when α is
a primitive root of E.) Our code will have length n.

3. Choose a designed distance δ ∈ N.

4. Let g(x) be the least common multiple of m1(x), . . . ,mδ−1(x), i.e., remove repetitions
of minimal polynomials and take the resulting product.

Definition 8.5.4. The cyclic code C obtained by a particular choice of E, α, and δ in
Algorithm 8.5.3 is called the BCH code given by E, α, and δ.

It’s worth noting the following strange feature of BCH codes, and actually, of cyclic codes
in general: The lengths and dimensions of a good cyclic code can’t be chosen randomly;
instead, good cyclic codes are more like objects found in nature. Specifically, to find a good
BCH code C, you look for a generator g(x) that has many roots αi for consecutive values
of i, which gives C its error-correcting power by Theorem 8.5.1, but also has relatively low
deg g(x), which gives C a high dimension by Theorem 8.3.3.

Example 8.5.5. Let E = F128, the field of order 128 = 27 (i.e., e = 7), and let α be a
primitive root of E (i.e., α has order 127). We begin by constructing the corresponding
BCH code C of designed distance δ = 13.

To construct this code, we need to compute mi(x) by computing Frobenius orbits. The
first such orbit is {

α1, α2, α4, α8, α16, α32, α64
}
, (8.5.2)

and we know this orbit is complete because α128 = α1. Using the notation of Example 8.4.16,
we abbreviate this orbit as {1, 2, 4, 8, 16, 32, 64}.

186 CHAPTER 8. STRONGER: BCH CODES

Next, since we need g(αi) = 0 for 1 ≤ i ≤ 12, the next power of α not yet accounted for
is α3, so we compute the orbit (again writing only the exponents and omitting α)

{3, 6, 12, 24, 48, 96, 65} . (8.5.3)

We again finish because α130 = α3, and we again see that the next power not yet accounted
for is α5. Continuing this process until we account for all i from 1 to 12, in total, we get:

{1, 2, 4, 8, 16, 32, 64} , {3, 6, 12, 24, 48, 96, 65} ,
{5, 10, 20, 40, 80, 33, 66} , {7, 14, 28, 56, 112, 97, 67} ,
{9, 18, 36, 72, 17, 34, 68} , {11, 22, 44, 88, 49, 98, 69} .

(8.5.4)

It follows that C has generator polynomial

g(x) = m1(x)m3(x)m5(x)m7(x)m9(x)m11(x), (8.5.5)

where, for example,

m7(x) = (x− α7)(x− α14)(x− α28)(x− α56)(x− α112)(x− α97)(x− α67). (8.5.6)

We similarly see that each mi(x) (i = 1, 3, 5, 7, 9, 11) has degree 7, so in total, deg g(x) = 42.

By Theorem 8.3.3, we see that dim C = 127 − 42 = 85, and so C is a [127, 85, d] code,
where d ≥ 13. Note that since 13 = 2(6) + 1, C corrects 6 errors per codeword, at least in
the abstract.

Example 8.5.6. Continuing Example 8.5.5, suppose we now try to construct the corre-
sponding BCH code of designed distance δ = 16. As before, we get orbits

{13, 26, 52, 104, 81, 35, 70} , {15, 30, 60, 120, 113, 99, 71} . (8.5.7)

So if

g(x) = m1(x)m3(x)m5(x)m7(x)m9(x)m11(x)m13(x)m15(x), (8.5.8)

we see that g(αi) = 0 for 1 ≤ i ≤ 15, as desired. However, looking back at (8.5.4), we see
that 16, 17, and 18 have previously appeared in our orbits, which means that

g(α16) = g(α17) = g(α18) = 0 (8.5.9)

as well. It follows that the corresponding code C actually has minimum distance at least
19, providing an example of a code where the actual minimum distance is greater than the
designed distance δ = 16.

In any case, since deg g(x) = 56, dim C = 127 − 56 = 71, and C is a [127, 71, d] code,
where d ≥ 19. Again, because d = 2(9) + 1, C corrects 9 errors per codeword.

Let’s also look at an example where α is not a primitive element.

8.5. BCH CODES 187

Example 8.5.7. Let q = 212 = 4096, let E = Fq (an extension of F2), let β be a primitive
root of E (of order 4095), and let α = β105. As we saw in Example 8.4.16, the order of α
is 4095/105 = 39, and the Frobenius orbits of αi are, in abbreviated notation,

O1 = {1, 2, 4, 8, 16, 32, 25, 11, 22, 5, 10, 20} ,
O3 = {3, 6, 12, 24, 9, 18, 36, 33, 27, 15, 30, 21} ,
O7 = {7, 14, 28, 17, 34, 29, 19, 38, 37, 35, 31, 23} ,
O13 = {13, 26} .

(8.5.10)

For completeness, let’s look at all of the BCH codes given by E and α for odd δ between
3 and 13. Note that since the order of α is 39, the length of each such BCH code is 39, and
not 4095 (a point that newcomers to this subject often find confusing).

� For δ = 3, we have, as we always do for δ = 3,

g(x) = m1(x)

= (x− α1)(x− α2)(x− α4)(x− α8)(x− α16)(x− α32)

(x− α25)(x− α11)(x− α22)(x− α5)(x− α10)(x− α20),

(8.5.11)

where the expansion ofm1(x) comes from O1, as we saw before in (8.4.21). For brevity,
we omit the product expansions for the other mi(x) in the rest of this example, but
you can obtain those expansions from the other Oi in a simiar manner.

In any case, since O1 is size 12, deg g(x) = 12, and dim C = 39−12 = 27, which means
that C is a [39, 27, d] code for d ≥ 3.

� For δ = 5, we need to add on O3 to ensure α4 is in the roots of g(x). However, when
we do that, we see that we get α5 for free, which means that g(x) has roots αi for
1 ≤ i ≤ 6. In other words, g(x) = m1(x)m3(x) is actually also the generator for the
BCH code given by E, α, and δ = 7. Furthermore, dim C = 39− 24 = 13, and C is a
[39, 13, d] code for d ≥ 7.

� To get δ = 9, we add on O7. However, when we do that, we see that g(x) has roots
αi for 1 ≤ i ≤ 12, which means that g(x) = m1(x)m3(x)m7(x) is also the generator
for δ = 11 and δ = 13. We also see that dim C = 39− 36 = 3, and C is a [39, 3, d] code
for d ≥ 13.

� Finally, if we add on O13 to get

g(x) = m1(x)m3(x)m7(x)m13(x), (8.5.12)

we see that g(x) has roots αi for 1 ≤ i ≤ 38, and the minimum distance d ≥ 39 — yay,
lots of error correction! Alas, the reason we can achieve so much error correction is
that dim C = 39−38 = 1, and C is the [39, 1, 39] code we already know: the repetition
code of length 39 (Example 6.2.9). Yay?

188 CHAPTER 8. STRONGER: BCH CODES

It also happens to be the case that the “best” codes we’ve seen so far, H7 and G23,
happen to be examples of BCH codes. (To be fair, that’s probably just because H7 and G23

are among the smaller examples of many useful constructions of codes.)

Example 8.5.8. Let E = F8, the field of order 8 = 23 (i.e., e = 3), and let α be a primitive
root of E (i.e., α has order 7). As seen in Example 8.4.15, m1(x) = m2(x), so for a designed
distance δ = 3, we take g(x) = m1(x) = m2(x). Since deg g(x) = 3, dim C = 7− 4 = 3, and
C is a [7, 4, d] code, with d ≥ δ = 3. In fact, as in Example 8.3.6, C = H7.

Example 8.5.9. Let E = F2048, the field of order 2048 = 212 (i.e., e = 12), let β be a
primitive root of E (so β has order 2047 = 23 · 89), and let α = β89. By Theorem 7.6.11),
α has order 2047/89 = 23, so a BCH code obtained by applying Algorithm 8.5.3 to E and
α will have length 23. Computing the Frobenius orbit of α1, and keeping in mind that the
order of α is 23, in the notation of Example 8.5.5, we get

{1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12} . (8.5.13)

Therefore, if we take g(x) = m1(x) = m2(x) = m3(x) = m4(x), since deg g(x) = 11,

dim C = 23− 11 = 12, and C is a [23, 12, d] code, with d ≥ δ = 5 (i.e., correcting
5− 1

2
= 2

errors per codeword). In fact, it can be shown that we can choose β, and therefore α, such
that

g(x) = x11 + x9 + x7 + x6 + x5 + x+ 1, (8.5.14)

as promised in Example 8.3.8. Moreover, it can be shown that the minimum distance of C is

actually 7, making C a [23, 12, 7], correcting
7− 1

2
= 3 errors per codeword. For a proof of

minimum distance 7 and much more about the Golay 23-code, see MacWilliams and Sloane
Chs. 7, 16, and 20.

Remark 8.5.10. We do not discuss explicit error-correction methods here, but efficient
error-correction methods do exist; see ??.

Before we can finally prove the BCH Theorem, we need the following fact from linear
algebra.

Lemma 8.5.11. Let F be a field, let α1, . . . , αk be pairwise distinct elements of F (i.e.,
αi ̸= αj for i ̸= j), and let c1, . . . , ck ∈ F be nonzero elements of F . Then the columns of
the matrix

V =



c1 c2 c3 · · · ck−1 ck
c1α1 c2α2 c3α3 · · · ck−1αk−1 ckαk

c1α
2
1 c2α

2
2 c3α

2
3 · · · ck−1α

2
k−1 ckα

2
k

...
...

...
. . .

...
...

c1α
k−2
1 c2α

k−2
2 c3α

k−2
3 · · · ck−1α

k−2
k−1 ckα

k−2
k

c1α
k−1
1 c2α

k−1
2 c3α

k−1
3 · · · ck−1α

k−1
k−1 ckα

k−1
k


(8.5.15)

are linearly independent.

8.5. BCH CODES 189

When all of the ci are 1, a matrix V of the form in (8.5.15), or the transpose of such a
matrix, is called a Vandermonde matrix.

Proof. By Corollary 5.7.5, it’s enough to show that the matrix

V t =



c1 c1α1 c1α
2
1 · · · c1α

k−2
1 c1α

k−1
1

c2 c2α2 c2α
2
2 · · · c2α

k−2
2 c2α

k−1
2

c3 c3α3 c3α
2
3 · · · c3α

k−2
3 c3α

k−1
3

...
...

...
. . .

...
...

ck−1 ck−1αk−1 ck−1α
2
k−1 · · · ck−1α

k−2
k−1 ckα

k−1
k−1

ck ckαk ckα
2
k · · · ckα

k−2
k ckα

k−1
k


(8.5.16)

satisfies Null(V t) = {0}.

So suppose b =

 b0
...

bk−1

 ∈ Null(V t). In that case, since the ith entry of V tb is 0, we see

that
cib0 + cib1αi + cib2α

2
i + · · ·+ cibk−2α

k−2
i + cibk−1α

k−1
i = 0. (8.5.17)

Therefore, if we let f(x) = b0 + b1x + · · · + bk−1x
k−1, we have that cif(αi) = 0. In fact,

since ci ̸= 0, we have that f(αi) = 0 for 1 ≤ i ≤ k, or in other words, f is a polynomial of
degree at most k − 1 with k distinct roots α1, . . . , αk. It follows from Corollary 3.4.9 that
f(x) is the zero polynomial, or in other words, b = 0. The lemma follows.

Proof of BCH Theorem 8.5.1. Suppose c(x) = c0 + · · · + cn−1x
n−1 ∈ C. Because g(x)

generates C, c(x) = q(x)g(x), so c(αi) = 0 for 1 ≤ i ≤ δ − 1. In other words,

c0 + c1α
i + c2α

2i · · ·+ cn−1α
(n−1)i = 0 (8.5.18)

for 1 ≤ i ≤ δ − 1.
In vector form, (8.5.18) becomes

[1 αi α2i . . . α(n−1)i]

 c0
...

cn−1

 = 0. (8.5.19)

Therefore, for any fixed c =

 c0
...

cn−1

 ∈ C, (8.5.19) holds for 0 ≤ i ≤ δ − 1, so if we define a

(δ − 1)× n matrix H by

H =


1 α α2 · · · αn−1

1 α2 α2(2) · · · α(n−1)2

1 α3 α2(3) · · · α(n−1)3

...
...

...
. . .

...

1 αδ−1 α2(δ−1) . . . α(n−1)(δ−1)

 , (8.5.20)

190 CHAPTER 8. STRONGER: BCH CODES

then for any c ∈ C, we have that Hc = 0; in other words, C ⊆ Null(H).

So now, let c ∈ Fn
2 be a vector of (Hamming) weight at most δ − 1, or in other words,

suppose ci = 0 except possibly for δ − 1 coordinates ci1 , . . . , ciδ−1
. The corresponding

columns i1, . . . , iδ−1 of H then form a (δ − 1)× (δ − 1) matrix

Hc =


αi1 αi2 αi3 · · · αiδ−1

α2i1 α2i2 α2i3 · · · α2iδ−1

α3i1 α3i2 α3i3 · · · α3iδ−1

...
...

...
. . .

...

α(δ−1)i1 α(δ−1)i2 α(δ−1)i3 . . . α(δ−1)iδ−1

 (8.5.21)

such that Hcc = 0.

However, since α has order n, all powers of α between 0 and n− 1 are different, which
means that V has the form specified in Lemma 8.5.11 (with cj = αij and αj = αij). It
follows that the columns of Hc are linearly independent, and therefore, since Hcc = 0, we
must have c = 0. Consequently, C has no nonzero codewords c of weight at most δ − 1.
The theorem follows.

Remark 8.5.12. Fact: long BCH codes are bad.

Problems

8.5.1. Let E = F16, and let α be a primitive element of E (i.e., α has order n = 15).

(a) Let δ = 3, and let C be the corresponding BCH code obtained by Algorithm 8.5.3.
Find the generating polynomial g(x) of C and k = dim C. You do not need to multiply
g(x) out over F2; just leave it in product form.

(b) Same, but for δ = 5.

(c) Give an example of a BCH code where the actual minimal distance is greater than the
designed minimal distance.

8.5.2. Let E = F32, and let α be a primitive element of E (i.e., α has order n = 31).

(a) Let δ = 5, and let C be the corresponding BCH code obtained by Algorithm 8.5.3.
Find the generating polynomial g(x) of C and k = dim C. You do not need to multiply
g(x) out over F2; just leave it in product form.

(b) Same, but for δ = 7.

8.5.3. Let E = F64, and let α be a primitive element of E (i.e., α has order n = 63).

(a) Let δ = 5, and let C be the corresponding BCH code obtained by Algorithm 8.5.3.
Find the generating polynomial g(x) of C and k = dim C. You do not need to multiply
g(x) out over F2; just leave it in product form.

(b) Same, but for δ = 7.

8.5. BCH CODES 191

(c) Same, but for δ = 9.

8.5.4. Let E = F64, let β be a primitive element of E, and let α = β7.

(a) What is the order of α? Explain.

(b) Let δ = 3, and let C be the corresponding BCH code obtained by Algorithm 8.5.3
applied to E, α, and δ. Find the generating polynomial g(x) of C and k = dim C. You
do not need to multiply g(x) out over F2; just leave it in product form.

(c) Same, but for δ = 5. What is another name for the resulting code? Explain your
answer.

8.5.5. Let E = F256, let β be a primitive element of E, and let α = β17.

(a) What is the order of α? Explain.

(b) Let δ = 3, and let C be the corresponding BCH code obtained by Algorithm 8.5.3
applied to E, α, and δ. Find the generating polynomial g(x) of C and k = dim C. You
do not need to multiply g(x) out over F2; just leave it in product form.

(c) Same, but for δ = 5.

(d) Same, but for δ = 7.

8.5.6. Let E = F256, let β be a primitive element of E, and let α = β15.

(a) What is the order of α? Explain.

(b) Let δ = 3, and let C be the corresponding BCH code obtained by Algorithm 8.5.3
applied to E, α, and δ. Find the generating polynomial g(x) of C and k = dim C. You
do not need to multiply g(x) out over F2; just leave it in product form.

(c) Same, but for δ = 5. What is another name for the resulting code? Explain your
answer.

8.5.7. Let E = F256, let β be a primitive element of E, and let α = β5.

(a) What is the order of α? Explain.

(b) Let δ = 5, and let C be the corresponding BCH code obtained by Algorithm 8.5.3
applied to E, α, and δ. Find the generating polynomial g(x) of C and k = dim C. You
do not need to multiply g(x) out over F2; just leave it in product form.

(c) Same, but for δ = 7.

(d) Same, but for δ = 9.

8.5.8. Let E = F256, let β be a primitive element of E, and let α = β3.

(a) What is the order of α? Explain.

(b) Let δ = 5, and let C be the corresponding BCH code obtained by Algorithm 8.5.3
applied to E, α, and δ. Find the generating polynomial g(x) of C and k = dim C. You
do not need to multiply g(x) out over F2; just leave it in product form.

192 CHAPTER 8. STRONGER: BCH CODES

(c) Same, but for δ = 7.

(d) Same, but for δ = 9.

8.5.9. Let E = F2048, let β be a primitive element of E, and let α = β23.

(a) What is the order of α? Explain.

(b) Let δ = 5, and let C be the corresponding BCH code obtained by Algorithm 8.5.3
applied to E, α, and δ. Find the generating polynomial g(x) of C and k = dim C. You
do not need to multiply g(x) out over F2; just leave it in product form.

(c) Same, but for δ = 7.

(d) Same, but for δ = 9.

8.6 Better codes and the burst error problem

EVERYTHING AFTER THIS POINT IN CHAPTER 8 NEEDS TO BE REWRIT-
TEN — NOT YET READY FOR USE

(and won’t be used in Spring 2023)

Going back to codes, remember that because of Theorem 6.4.13, we know that a code
with a larger minimum distance corrects more errors. We can achieve a large minimum
distance inefficiently by just repeating each data bit many times, but it would be more
useful to achieve a large minimum distance while also being able to transmit more data bits.
That is, using [n, k, d] from Notation 6.4.1, the first motivating problem of this chapter can
be stated as:

Motivating Problem 8.6.1. Find [n, k, d] codes where both k and d are as large as
possible, given n.

For our second motivating problem, suppose we have a communications channel where
errors aren’t evenly spread, but instead clumped together in bunches, or bursts. This
happens with many real-life communications situations, such as the following.

� Transmissions over the internet: Instead of “static” or “noise” errors, you might
instead see errors coming from some kind of disconnection that would brief by the
human sense of time, but would nevertheless totally mangle a long string of bits.

� Data on a hard drive: As of 2024, data is still often stored on rotating disk at high
density. A scratch on such a disk might again mangle a long string of bits.

� DVDs: As of 2024, people still buy or rent movies on plastic discs called DVDs, which
have the same vulnerability to scratches that hard drives do.�

�I realize I sound like an alien being describing everyday human life, but this is here as a hedge for the
future. Even 10 years ago, I would have used CDs for this example, but by now, in 2024, I suspect some
readers will have never encountered a CD.

8.7. CYCLIC CODES OVER ARBITRARY FIELDS 193

As always, we should try to look at some “duh” solutions to this problem, for comparison.
More to the point, here are some problems any solution to the burst error problem must
overcome.

� First off, we need to make our codewords very long, or else a burst error will randomize
an entire codeword, making error-correction impossible.

� More subtly, in the terms of Notation 6.4.1, as a code gets very long (n → ∞), it
becomes very difficult to keep both the information rate k/n and the error-correction
rate d/n high.

So it’s probably the case that something has to give. Therefore, instead of looking for
a code that can do it all, let’s look at the following problem, which is not quite as difficult.
(After all, this is still a math book, which means we still have the option of making the
problem easier until we can actually solve it.)

Motivating Problem 8.6.2. Create an error-correcting code C that will correct relatively
long burst errors. We allow for the possibility that C is not so great at correcting randomly
scattered errors (i.e., has a low d/n).

Problems

8.6.1. Consider a binary linear error-correcting code C. In this problem, we look at how
burst errors interact with not just one codeword, but a sequence of codewords.

(a) Suppose C has length 10. What is the length b of the smallest burst of bit errors
(consecutive string of bit errors) that can affect (create errors within) two consecutively
transmitted codewords? Draw a picture to explain your answer.

(b) Now suppose C has length 13. What is the length b of the smallest burst of bit errors
that can affect three consecutively transmitted codewords? Again, explain with a
picture.

(c) Finally, suppose C has some arbitrary length n, and m ≥ 2. In terms of n and m,
what is the length b of the smallest burst of bit errors that can affect m consecutively
transmitted codewords? Explain with a picture.

8.7 Cyclic codes over arbitrary fields

To construct the class of codes that solves Motivating Problem 8.6.2, we will first need to
generalize the idea of a binary linear code (Definition 6.2.3).

Definition 8.7.1. Let q = pr be a prime power, and let Fq be the (unique) field of order q.
A linear code C of length n over Fq is a subspace C of Fn

q . Elements (vectors) of a linear
code are still called codewords.

194 CHAPTER 8. STRONGER: BCH CODES

Remark 8.7.2. Since all of the codes we discuss will be linear, we will sometimes just call
them codes. In case you were wondering, though, there are such things as nonlinear codes,
which are just defined to be subsets of Fn

q , and in fact, you can construct nonlinear codes
that have excellent communications statistics (i.e., the nonlinear equivalent of a high k/n
and d/n). However, nonlinear codes are more difficult to use because we can no longer think
of them in terms of linear algebra. For more on nonlinear codes, see ???.

definition of cyclic code (Definition 8.2.1) generalizes.

Definition 8.7.3. Let C be a code of length n over Fq. To say that C is cyclic means that
it is closed under cyclic permutation of coordinates. That is, to say that C is cyclic means

that if


c0
c1
c2
...

cn−1

 is in C, then so are


cn−1

c0
c1
...

cn−2

,

cn−2

cn−1

c0
...

cn−3

, and so on.

Notation 8.7.4. The polynomial notation for vectors in Fn
q represents the vector

 c0
...

cn−1


as the polynomial

c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 (8.7.1)

in the ring R = Fq[x]/(x
n − 1) (i.e., setting xn ≡ 1).

Note that for the ring F2[x]/(x
n − 1), instead of using the α notation (Notation 7.3.5)

established earlier, we’ll continue to refer to elements of F2[x]/(x
n − 1) as polynomials in

x, with the understanding that xn = 1. The reason is that Fq

Theorem 8.7.5. Let C be a linear code of length n over Fq. In polynomial notation, C is
cyclic if and only if it is an ideal of the ring Fq[x]/(x

n − 1).

Theorem 8.7.6. Fix a positive integer n, and let C be a nonzero cyclic code of length n
over Fq, i.e., let C be an ideal of R = Fq[x]/(x

n−1). Then C is principal, or in other words,
C = (g(x)) for some g(x) ∈ Fq[x]. Moreover, we can choose g(x) so that g(x) divides xn−1.

8.8 Reed-Solomon codes

Reed-Solomon codes are constructed by taking the special case of BCH codes when E = Fq

(q = 2e) and thinking of each “byte” in Fq as a string of e “bits” in F2. As we will soon
see, Reed-Solomon codes are not particularly good codes if errors are randomly scattered
in a transmission, but they provide an effective and practical solution to the burst error
problem (Motivating Problem 8.6.2).

8.8. REED-SOLOMON CODES 195

We now give the recipe for constructing a Reed-Solomon code. First, however, recall
that for q = 2e, Fq = F2[x]/(m(x)), where m(x) is a degree e polynomial that is irreducible
over F2. In practice, that means that elements of Fq can be represented as polynomials

a0 + a1x+ a2x
2 + · · ·+ ae−1x

e−1 ∈ F2[x], (8.8.1)

which in turn can be represented as a “byte” (a0, . . . , ae−1) of e bits. Therefore, when
we construct a Reed-Solomon code C, we will need to distinguish between Fq-lengths and
dimensions, which we denote by the capital lettersN andK, and F2-lengths and dimensions,
which we denote by lower-case letters n and k. Note that since each “byte” (element of Fq)
is made from e “bits” (elements of F2), we have that n = Ne and k = Ke. We similarly
use D and d to denote the minimum Fq-distance and F2-distance of C.

Algorithm 8.8.1 (Constructing a Reed-Solomon code). The following recipe constructs a
Reed-Solomon code C over a field Fq.

1. Choose q = 2e for some e ∈ N, and let E = Fq.

2. Choose α ∈ E with order N . (If N = q − 1, then α is also a primitive element of E.)

3. Choose a designed distance ∆ ∈ N.

4. Since the elements αi are all in Fq, mi(x) = (x−αi) is the minimal polymomial of αi

over Fq. Therefore, let

g(x) = (x− α1)(x− α2)(x− α3) . . . (x− α∆−1). (8.8.2)

Then C is the cyclic code generated by g(x).

First, the bad news: If C is a Reed-Solomon code, and we look at C as a code over F2

with randomly scattered bit errors, then C will generally not be so great as a code. The
problem is that the bit length n = Ne, or e times the byte length, but each randomly
scattered bit error can potentially cause a byte error, which effectively makes d = D. The
correction rate is therefore effectively

d

n
=

D

Ne
=

1

e

(
D

N

)
, (8.8.3)

or in other words, the random-bit-error-correction rate is reduced by a factor of e from the
random-byte-error-correction rate.

The good news is that Reed-Solomon codes are very good at correcting burst bit errors,
as shown by the following example.

Example 8.8.2. Let E = F512, the field of order 512 = 29 (i.e., e = 9), and let α be a
primitive root of E (so in particular, α511 = 1). Let C be the Reed-Solomon code of designed
distance ∆ = 201. We see that

g(x) =
200∏
i=1

(x− αi), (8.8.4)

196 CHAPTER 8. STRONGER: BCH CODES

a polynomial of degree 200, and since N = 511, the “byte” dimension of C is K = 311.
Since e = 9, we also see that n = 9(511) = 4599 and k = 9(311) = 2799. Futhermore,
since ∆ = 201 = 2(100) + 1, we can correct 100 randomly occurring“byte” errors in any
codeword, but as mentioned above, we are also only guaranteed to be able to correct 100
randomly occurring“bit” errors, which is not a great ratio when compared to the bit length
of 4599.

However, suppose that our bit errors occur not randomly, but instead, in a single burst
of length b. We see from Figure 8.8.1, below, that if b ≤ 99(9)+1 (but not if b = 99(9)+2),
then that burst will be contained within 100 “bytes”, and can therefore be corrected. It
follows that within any codeword of length 4599, we can correct any single burst of length
at most 99(9) + 1 = 892.

= 9 bitse

99(9) + 2 bits

99(9) + 1 bits

Figure 8.8.1: The longest correctible burst error

There’s nothing special about the parameters of Example 8.8.2, so exactly the same
argument results in the following theorem.

Theorem 8.8.3 (Reed-Solomon burst correction). Let C be a Reed-Solomon code con-
structed over Fq (“bytes”) with q = 2e and designed Fq-distance ∆ = 2T + 1. Then any
burst (“bit”) error of length at most b = (T − 1)e + 1 within a single codeword can be
corrected.

Proof. Problem 8.8.2.

Problems

8.8.1. Let E = F256, and let α be a primitive root of unity of E (i.e., N = 255).

(a) For the Reed-Solomon code C with designed Fq-distance ∆ = 15, find the generator
polynomial g(x), the Fq-dimension K, the F2-dimension k, and the maximum burst
error correction length b.

(b) Same, but for ∆ = 19.

(c) Same, but for ∆ = 33.

8.8.2. longest burst that can be corrected.

8.9. ERROR CORRECTION IN BCH CODES 197

8.9 Error correction in BCH codes

To be written later: how to correct errors in BCH codes

198 CHAPTER 8. STRONGER: BCH CODES

Chapter 9

The Discrete Fourier Transform

9.1 Digital signal processing

motivating problem
not necessary, but just in case you’re interested.
continuous solution: Fourier series with sines and cosines
discrete solution: Fourier series with e2πinx.

9.2 Complex numbers and roots of unity

We have referred to complex numbers occasionally so far, but in this chapter, we’ll need
to understand them in much greater detail. One way to think of complex numbers is that
they consist of all expressions of the form a+ bi, where a and b are real numbers, and i is
a new (to-be-defined) symbol:

C = {a+ bi | a, b ∈ R} . (9.2.1)

Addition and multiplication of elements of C is then defined to be multiplication of “poly-
nomials in i”, with the additional rule that i2 = −1. In other words, C is precisely the
quotient ring R[x]/(x2 + 1)! For example:

(3 + 7i)(4− 5i) = 3(4)− 3(5i) + (7i)(4)− (7i)(5i)

= 12− 15i+ 28i− 35(i2)

= 12− 15i+ 28i+ 35

= 47 + 13i.

(9.2.2)

Another way to look at complex numbers that will be very useful to us is to draw them
in the complex plane. As shown in Figure 9.2.1, the idea is that we draw a + bi as the
point (a, b) in the xy-plane. This ties naturally into two other operations one can do on a
complex number a+ bi, namely, the modulus, or absolute value, of a+ bi:

|a+ bi| =
√
a2 + b2; (9.2.3)

199

200 CHAPTER 9. THE DISCRETE FOURIER TRANSFORM

and the (complex) conjugate of a+ bi:

a+ bi = a− bi. (9.2.4)

Note that if a ∈ R, then the modulus |a+ 0i| =
√
a2 is the usual real absolute value of a;

in other words, the modulus is a generalization of the real absolute value of a number.
The modulus and the conjugate have the following algebraic properties.

Theorem 9.2.1. For z, w ∈ C, we have that

1. |zw| = |z| |w|;

2. zz = |z|2;

3. |z| ≥ 0, and |z| = 0 if and only if z = 0; and

4. If z ̸= 0, then

z

(
z

|z|2

)
= 1. (9.2.5)

We’ll see that the above property that is most useful to us is (9.2.5).

Proof. Problem 9.2.1.

The modulus and the complex conjugate also have natural geometric interpretations in
the complex plane, as shown in Figure 9.2.1: The modulus of a+ bi can be pictured as the
distance from the point a+bi to the origin, and the conjugate can be pictured as the mirror
image of a+ bi in the real axis (x-axis).

Re

i

1 + 2 i

Im

1 − 2

Figure 9.2.1: Two conjugate complex numbers

Taking things up a notch, we will take it as a fact* that for any z ∈ C, the complex
exponential ez can be defined starting with Euler’s formula

eix = cosx+ i sinx, (9.2.6)

*A fact proven in analysis (the theory of calculus), maybe even in a second course. Did I mention that
analysis is difficult?

9.2. COMPLEX NUMBERS AND ROOTS OF UNITY 201

where x is any real number, and cos and sin are calculated in radians (as any good calculus
student knows). As special cases of (9.2.6), we have

eπi = −1, e2πi = 1. (9.2.7)

(The part of (9.2.7) is sometimes known as Euler’s identity.) Since we will also take it as
fact that the usual exponential law

ez+w = ezew (9.2.8)

holds for all z, w ∈ C, we can extend Euler’s formula (9.2.6) to give

ex+yi = exeiy = ex cos y + (ex sin y)i (9.2.9)

for any x+ yi ∈ C, where ex is the usual real exponential function.
You may remember the identity known as de Moivre’s theorem from trigonometry or

precalculus. From our point of view, de Moivre’s theorem is a special case of applying the
usual exponential laws to complex exponentials, because for n ∈ N and x ∈ R,

(cosx+ i sinx)n = (eix)n = einx = cos(nx) + i sin(nx). (9.2.10)

Again, we’ll take it as given that this all works; I hope you find it plausible, or at least
internally consistent.

Re

θ i θ

θ

Im

cos + sin

Figure 9.2.2: Complex exponentials on the unit circle

Complex exponentials also have the following geometric interpretation. Drawing (9.2.6)
in the complex plane, we see that the complex numbers of the form eiθ, θ ∈ R, are precisely
the points on the unit circle, with θ being the angle of cos θ + i sin θ in the usual sense; see
Figure 9.2.2. More generally, for an arbitrary complex number a+ bi ̸= 0, if r = |a+ bi| is

the modulus of a+ bi, then
a+ bi

r
is a point eiθ on the unit circle, which means that

a+ bi = reiθ. (9.2.11)

Here θ is called the argument of a+ bi, and (9.2.11) is called the modulus-argument repre-
sentation of a+bi. The argument θ can be interpreted as the angle (again, in radians) going

202 CHAPTER 9. THE DISCRETE FOURIER TRANSFORM

from the positive x-axis to the ray from the origin through a + bi; again, see Figure 9.2.2.
Note that much like, for example, angles in polar coordinates, changing the argument of a
complex number z from θ to θ+ 2π does not change z at all; in other words, the argument
of z is defined only up to adding multiples of 2π.

In any case, we can now explain the reason we need complex numbers for the Discrete
Fourier Transform.

Definition 9.2.2. For a positive integer N , we define the natural primitive N th root of
unity in C to be

ωN = e2πi/N . (9.2.12)

When N is fixed, or the context is otherwise clear, we abbreviate ωN as ω.

The complex number ωN is called an Nth root of unity because the rules of exponents
(which, again, really do apply to complex exponentials) imply that

ωN
N =

(
e2πi/N

)N
= e2πi = 1. (9.2.13)

The “primitive” part of the name comes from the fact that there are other solutions z ∈ C
for zN = 1, but these other solutions are precisely the powers of ωN . That is:

Theorem 9.2.3. Let N be a positive integer, and let ω = ωN = e2πi/N . The zeros of the
polynomial zN −1 (i.e., the solutions to zN = 1) are precisely the powers 1, ω, ω2, . . . , ωN−1

of ω.

Proof. Problem 9.2.2.

Now, real talk here, if you haven’t spent much time thinking about complex numbers
or the complex exponential e2πix, you may be tempted to try to understand ωN in terms of
sines and cosines. Well, please don’t — that approach creates a big mess and doesn’t end
up helping you solve problems. Just keep in mind two things about ωN , one of which we
just discussed, and the other of which we will prove in the next section.

Key properties of ωN

Let N be a positive integer, and let ω = ωN = e2πi/N .

1. The solutions to zN = 1 are precisely the powers 1, ω, ω2, . . . , ωN−1 (Theo-
rem 9.2.3).

2. We have that
1 + ω + · · ·+ ωN−1 = 0. (9.2.14)

9.2. COMPLEX NUMBERS AND ROOTS OF UNITY 203

Later, we’ll prove (9.2.14) as a particular case of Lemma 9.3.4, but you can also find a
geometric justification in Figure 9.2.3. The idea there is, since the Nth roots of unity form
a regular N -gon with center at 0+ 0i, by symmetry, the average value of those points must
be 0, which means that their sum must also be 0. (For a precise version of this idea, see
Problem 9.2.3.)

1

2

ω
3

ω
4

ω
6

ω
5

Im

Re

ω
ω

Figure 9.2.3: Nth roots of unity (N = 7)

In any case, for our purposes, once we have the above properties, we can pretty much
treat ω as a black box and not even really think about the complex numbers again. Most
notably, everything else we do with the Discrete Fourier Transform, and later, with the Fast
Fourier Transform, can be done with (for example) ω a primitive element of a finite field.
See, for example, Problem 9.3.3, or see (reference???).

Problems

9.2.1. Let z = a+ bi and w = c+ di be complex numbers.

(a) Prove that |zw| = |z| |w|.
(b) Prove that |z|2 = zz.

(c) Prove that |z| ≥ 0, and |z| = 0 if and only if z = 0. (Suggestion: You can use the fact
that if a ∈ R, then a2 ≥ 0, and a2 = 0 if and only if a = 0.)

(d) Prove that if z ̸= 0, then z

(
z

|z|2

)
= 1.

9.2.2. The goal of this problem is to find all Nth roots of unity in C, i.e., all solutions
z ∈ C for zN = 1. Let ω = ωN = e2πi/N be the natural primitive Nth root of unity.

(a) Prove that for any k ∈ Z, z = ωk is a solution to zN = 1.

(b) Explain why the solution set to zN = 1 is precisely
{
ωk | k ∈ Z

}
. (Suggestion: Con-

sider zN − 1 and Section 3.4.)

9.2.3. prove Nth roots sum by symmetry (multiplication by ω).

204 CHAPTER 9. THE DISCRETE FOURIER TRANSFORM

9.3 Signals

To give some context and motivation for the Discrete Fourier Transform (DFT), we define
the following class of functions.

Definition 9.3.1. Fix N ∈ N. We define a signal to be a function f : Z/(N) → C, or in
other words, a complex-valued function with domain Z/(N). Note that a signal f is defined
by its N values f(0), . . . , f(N −1) ∈ C, so we sometimes represent a signal f in vector form

as

 f(0)
...

f(N − 1)

.
The following example of a signal on Z/(N) turns out to be a crucial one.

Definition 9.3.2. Fix N ∈ N, and let ω = e2πi/N be the natural primitive Nth root of
unity in C. We define the basic trigonometric signals ek : Z/(N) → C by the formula

ek(n) = ωkn. (9.3.1)

We can also represent the basic trigonometric signals ek in vector form as


1
ωk

...

ω(N−1)k

.
If you write out a few examples of the ek, you’ll see that when k divides N , the signal ek
has period N/k, with a slightly more complicated situation when k doesn’t divide N ; see
Problem 9.3.1.

Remark 9.3.3. The reason we call the ek “trigonometric” is that if you write out (9.3.1)
in terms of sines and cosines, you get:

ek(n) = e2πikn/N = cos

((
2πk

N

)
n

)
+ i sin

((
2πk

N

)
n

)
(9.3.2)

Now, I can’t emphasize strongly enough, you’re much better off in terms of doing algebra if
you write everything in terms of ω. Just keep in mind (or in your heart?) that each function
ek is a discrete version of a complexified sine/cosine function of period dividing N .

In some sense, the property in the following lemma explains why the basic trigonometric
signals are so important to us.

Lemma 9.3.4 (Orthogonality Lemma). Fix N ∈ N and let ω = ωN = e2πi/N be the natural
primitive N th root of unity in C. For t ∈ Z/(N), we have:

N−1∑
k=0

ωtk =

{
N if t = 0 (mod N),

0 otherwise.
(9.3.3)

9.4. THE DISCRETE FOURIER TRANSFORM 205

Proof. See Problem 9.3.2.

See Section 9.6 for an explanation of why we call Lemma 9.3.4 the Orthogonality Lemma.
For now, suffice it to say that because of numerous applications coming from signal pro-
cessing (see Section 9.1), we ask:

Motivating Problem 9.3.5. Fix N ∈ N. How can we express any signal on Z/(N) as a
linear combination of the basic trigonometric signals ek, 0 ≤ k ≤ N − 1?

Problems

9.3.1. Write out the ek in terms of vectors (N = 6, k = 0, 1, 2, 3, 4, 5).

9.3.2. (Proves Lemma 9.3.4) Fix N ∈ N, and let ω = e2πi/N . Let f(x) = xN − 1.

(a) Explain why

f(x) = xN − 1 = (x− 1)

(
N−1∑
k=0

xk

)
. (9.3.4)

(Suggestion: Try writing out the sum as 1 + x+)

(b) Explain why for any t ∈ Z/(N), f(ωt) = 0.

(c) Prove that for any t ∈ Z/(N),

N−1∑
k=0

ωtk =

{
N if t = 0 (mod N),

0 if t ̸= 0 (mod N).
(9.3.5)

Suggestion: Use the fact that a, b ∈ C, if ab = 0, then either a = 0 or b = 0.

9.3.3. (orthogonality when ω is a primitive element of a finite field)

9.4 The Discrete Fourier Transform

Definition 9.4.1. Fix N ∈ N, let ω = e2πi/N be the natural primitive Nth root of unity
in C, and let f : Z/(N) → C be a signal. We define the Discrete Fourier Transform, or
DFT, of f to be the function f̂ : Z/(N) → C given by

f̂(k) =
1

N

N−1∑
n=0

f(n)ω−kn. (9.4.1)

Note that while the DFT of a signal f is, by definition, itself a signal, it’s more helpful
to think of f̂(k) as the spectrum of f , as roughly speaking, f̂(k) measures the strength of
the part of f that has “frequency k”. (See Theorem 9.4.4, below, for a justification for this
idea.)

206 CHAPTER 9. THE DISCRETE FOURIER TRANSFORM

Remark 9.4.2. Looking at (9.4.1) for k = 0, 1, 2, 3, we get

f̂(0) =
1

N
(f(0) + f(1) + f(2) + · · ·+ f(N − 1)),

f̂(1) =
1

N
(f(0) + ω−1f(1) + ω−2f(2) + · · ·+ ω−(N−1)f(N − 1)),

f̂(2) =
1

N
(f(0) + ω−2f(1) + ω−2(2)f(2) + · · ·+ ω−2(N−1)f(N − 1)),

f̂(3) =
1

N
(f(0) + ω−3f(1) + ω−3(2)f(2) + · · ·+ ω−3(N−1)f(N − 1)).

(9.4.2)

In fact, if we write out (9.4.1) for k = 0, . . . , N − 1 and express the result in terms of
matrix-vector multiplication, we get

 f̂(0)
...

f̂(N − 1)

 =
1

N


1 1 1 . . . 1

1 ω−1 ω−2 . . . ω−(N−1)

1 ω−2 ω−2(2) . . . ω−2(N−1)

...
...

...
. . .

...

1 ω−(N−1) ω−2(N−1) . . . ω−(N−1)(N−1)


 f(0)

...
f(N − 1)

 . (9.4.3)

Consequently, the DFT itself is an O(N2) process, just like multiplying an N ×N matrix
times a column vector of length N .

Our next goal is to show that the DFT is invertible, and that its inverse is a process that
is very similar to the DFT itself. We therefore optimistically make the following definition.

Definition 9.4.3. Let f̂ : Z/(N) → C be a spectrum function. The inverse DFT of f̂ is
defined to be

N−1∑
k=0

f̂(k)ωkn. (9.4.4)

Note that this is the same transformation as the DFT (Definition 9.4.1), but with a sign

change and without the factor of
1

N
.

We now prove that the inverse DFT works as advertised.

Theorem 9.4.4 (Inversion Theorem). Fix N ∈ N, let ω = e2πi/N be the natural primitive
N th root of unity in C, and let f : Z/(N) → C be a signal. If f̂ is the DFT of f , then

f(n) =

N−1∑
k=0

f̂(k)ωkn. (9.4.5)

In other words, taking the inverse transform, which again is basically the DFT with a
sign change, recovers our original signal f .

9.4. THE DISCRETE FOURIER TRANSFORM 207

Proof. Considering the right-hand side of (9.4.5) with the variable x in place of the variable
n, we see that

N−1∑
k=0

f̂(k)ωkx =
1

N

N−1∑
k=0

(
N−1∑
n=0

f(n)ω−nk

)
ωkx

=
1

N

N−1∑
n=0

f(n)

N−1∑
k=0

ωk(x−n) (*)

=
1

N
(f(x)N) (**)

= f(x),

(9.4.6)

where (*) follows by switching the order of summation, and (**) follows by the Orthogonality
Lemma 9.3.4. The theorem follows.

Remark 9.4.5. Extending Remark 9.4.2, we see that Theorem 9.4.4, written in terms of
matrix-vector multiplication, gives:

 f(0)
...

f(N − 1)

 =


1 1 1 . . . 1

1 ω1 ω2 . . . ω(N−1)

1 ω2 ω2(2) . . . ω(N−1)2

...
...

...
. . .

...

1 ω(N−1) ω2(N−1) . . . ω(N−1)(N−1)


 f̂(0)

...

f̂(N − 1)

 (9.4.7)

In other words, if we form a matrix T̂ whose kth column is the basic trigonometric signal ek,

then T̂

 f̂(0)
...

f̂(N − 1)

 =

 f(0)
...

f(N − 1)

. Since T̂

 f̂(0)
...

f̂(N − 1)

 is the linear combination of the

columns of T̂ with coefficients taken from

 f̂(0)
...

f̂(N − 1)

, we see that the f̂ are the coefficients

that express our original signal f as a linear combination of the basic trigonometric signals
ek, solving Motivating Problem 9.3.5.

208 CHAPTER 9. THE DISCRETE FOURIER TRANSFORM

Put another way, since (9.4.7) holds for every signal f , it must actually be the case that


1

N


1 1 1 . . . 1

1 ω−1 ω−2 . . . ω−(N−1)

1 ω−2 ω−2(2) . . . ω−(N−1)2

...
...

...
. . .

...

1 ω−(N−1) ω−2(N−1) . . . ω−(N−1)(N−1)





−1

=


1 1 1 . . . 1

1 ω1 ω2 . . . ω(N−1)

1 ω2 ω2(2) . . . ω(N−1)2

...
...

...
. . .

...

1 ω(N−1) ω2(N−1) . . . ω(N−1)(N−1)

 .

(9.4.8)

Problems

9.4.1. Consider the formula (9.4.1) of Definition 9.4.1.

(a) For N = 6, expand each of the sums f̂(0), f̂(1), f̂(2), f̂(3), f̂(4), and f̂(5), in the style
of (9.4.2) in Remark 9.4.2, but write out each sum completely instead of using “dot
dot dot”s. For each ωm that appears in your answer, reduce the exponent m (mod 6)
such that −5 ≤ m ≤ 0.

(b) Same, but N = 8, and expand f̂(0), . . . , f̂(7) with ωm such that −7 ≤ m ≤ 0.

(c) Same, but N = 9, and expand f̂(0), . . . , f̂(8) with ωm such that −8 ≤ m ≤ 0.

(d) Same, but N = 12, and expand f̂(0), . . . , f̂(11) with ωm such that −11 ≤ m ≤ 0.

9.4.2. Consider the formula (9.4.1) of Definition 9.4.1. For the given N :

� Write the forward DFT as a matrix, as in Remark 9.4.2, reducing each ωm so that
−(N − 1) ≤ m ≤ 0;

� Write the inverse DFT as a matrix, as in Remark 9.4.5, reducing each ωm so that
0 ≤ m ≤ N − 1; and

� Multiply the two matrices and verify that you get the identity.

(a) N = 4.

(b) N = 6.

(c) N = 8.

(d) N = 9.

9.5. CONVOLUTION 209

9.5 Convolution

The DFT, like all Fourier transforms, has many remarkable properties that we won’t have
time to get into. The one we will look at is its interaction with the property known as
convolution.

Definition 9.5.1. Let f, g : Z/(N) → C be signals. We define the convolution of f and g
to be the signal f ∗ g : Z/(N) → C defined by

(f ∗ g)(n) = 1

N

N−1∑
t=0

f(n− t)g(t). (9.5.1)

Unless you’ve seen Fourier series or Fourier analysis before, you probably think Defini-
tion 9.5.1 is strange and unmotivated. However, it can be justified in terms of two important
properties; the first has to do with multiplication of polynomials.

Theorem 9.5.2. Let f, g : Z/(N) → C be signals. Then in the ring C[x]/(xN − 1), we
have that (

1

N

N−1∑
k=0

f(k)xk

)(
1

N

N−1∑
m=0

g(m)xm

)
=

1

N

N−1∑
n=0

(f ∗ g)(n)xn. (9.5.2)

In other words, after scaling appropriately, the convolution f ∗ g gives the coefficients
of the product of the polynomials whose coefficients are given by f and g, as long as we are
working (mod (xN − 1)) (i.e., taking xN = 1).

Before proving Theorem 9.5.2, we need the following lemma.

Lemma 9.5.3 (Substitution Lemma). Let h : Z/(N) → C be a complex-valued function
on Z/(N). Then for any t ∈ Z/(N), we have that

N−1∑
k=0

h(k) =
N−1∑
n=0

h(n− t). (9.5.3)

Note that we can think of (9.5.3) as justifying “summation by substitution k = n− t”,
in analogy with integration by substitution. Note also that the expression n− t appearing
in (9.5.3) must be computed mod N to make sense (otherwise we’d end up with negative
numbers or numbers bigger than N − 1).

Proof. See Problem 9.5.1.

210 CHAPTER 9. THE DISCRETE FOURIER TRANSFORM

Proof of Theorem 9.5.2. Replacing m with t in (9.5.2), we have that(
1

N

N−1∑
k=0

f(k)xk

)(
1

N

N−1∑
t=0

g(t)xt

)
=

1

N2

N−1∑
t=0

N−1∑
k=0

f(k)g(t)xk+t

=
1

N2

N−1∑
t=0

N−1∑
n=0

f(n− t)g(t)x(n−t)+t (*)

=
1

N

N−1∑
n=0

(
1

N

N−1∑
t=0

f(n− t)g(t)

)
xn

=
1

N

N−1∑
n=0

(f ∗ g)(n)xn,

(9.5.4)

where we switch the order of summation twice, and we use the substitution k = n − t in
(*), by the Substitution Lemma 9.5.3. The theorem follows.

The other key property of convolution is that the DFT turns convolution into pointwise
multiplication. More precisely, we have the following theorem.

Theorem 9.5.4. Let f, g : Z/(N) → C be signals. We have that

(̂f ∗ g)(k) = f̂(k)ĝ(k). (9.5.5)

Proof of Theorem 9.5.4. We have that

(̂f ∗ g)(k) = 1

N

N−1∑
n=0

(f ∗ g)(n)ω−nk (*)

=
1

N

N−1∑
n=0

1

N

(
N−1∑
t=0

f(n− t)g(t)

)
ω−nk (**)

=
1

N2

N−1∑
t=0

N−1∑
u=0

f(u)g(t)ω−(u+t)k (***)

=

(
1

N

N−1∑
u=0

f(u)ω−uk

)(
1

N

N−1∑
u=0

g(t)ω−tk

)
= f̂(k)ĝ(k),

(9.5.6)

where (*) is the definition of the DFT of f ∗ g (Definition 9.4.1), (**) is the definition of
f ∗ g (Definition 9.5.1), and (***) is the substitution u = n− t (Substitution Lemma 9.5.3).
The theorem follows.

The significance of Theorem 9.5.4 is that it points the way towards a faster algorithm for
multiplying two numbers. Because of carrying (!), among other complications, multiplying
numbers is too hard a problem to discuss in this book, so instead, let’s consider the following
toy version of the same problem.

9.5. CONVOLUTION 211

Motivating Problem 9.5.5. Compute the product of two polynomials of degree ≤ N0

whose coefficients are given by f(n) and g(n).

If N ≥ 2N0 + 1, multiplying polynomials of degree ≤ N0 reduces to multiplying poly-
nomials in C[x]/(xN − 1), so Motivating Problem 9.5.5 reduces to the following problem:

Motivating Problem 9.5.6. Compute the product of two polynomials in C[x]/(xN − 1)
whose coefficients are given by f(n) and g(n). In other words, by Theorem 9.5.2, given two
signals f(n) and g(n), compute the convolution (f ∗ g)(n).

By our previous discussion, we have the following naive algorithm for computing (f ∗
g)(n).

Naive Algorithm 9.5.7. Suppose we have two signals f, g : Z/(N) → C.

1. Compute the DFTs f̂(k) and ĝ(k).

2. For all k ∈ Z/(N), let ĥ(k) = f̂(k)ĝ(k).

3. Compute the inverse DFT h(n) of ĥ(k).

Now, the good news is that computing the product/convolution f ∗g(n) by the standard
method is an O(N2) operation, whereas Step 2 of Naive Algorithm 9.5.7 is an O(N) oper-
ation! However, the bad news is that Steps 1 and 3 of Naive Algorithm 9.5.7 are O(N2)
operations, which would seem to make this “shortcut” not very useful. However, if we
can replace the direct DFT with something that runs in less time than O(N2), then since
the DFT is now the bottleneck in multiplication, we will then get a faster algorithm for
multiplication. We therefore come to the following motivating problem.

Motivating Problem 9.5.8. Find an algorithm for computing the DFT that runs in less
time than O(N2).

In the next few chapters, we’ll see such an algorithm: the Fast Fourier Transform.

Problems

9.5.1. (a) Consider Z/(N) = {0, 1, . . . , N − 1} and suppose t ∈ Z/(N). What set do we
get if we add t to each element of Z/(N)? (Suggestion: Try some random values of N
and t and see what happens; then generalize.)

(b) Now let h : Z/(N) → C be a complex-valued function on Z/(N), and fix some t ∈
Z/(N). Explain why

N−1∑
k=0

h(k) =
N−1∑
n=0

h(n− t). (9.5.7)

Suggestion: Try writing out both sides of (9.5.7).

9.5.2. compare time estimates for multiplications

212 CHAPTER 9. THE DISCRETE FOURIER TRANSFORM

9.6 Inner products and orthogonality

In this section, which is something of a digression from our main discussion, we’ll take an-
other approach to Fourier inversion (Definition 9.4.3 and Theorem 9.4.4), namely, approach-
ing inversion in terms of dot products and linear algebra. Note that since this alternative
approach is not needed in the rest of this book, and since all of the proofs are left to you,
this section is well-suited for self-study or a supplementary project.

As in Section 9.4, fix N ∈ N and let ω = e2πi/N be the natural primitive Nth root of
unity in C. Note that by thinking of vectors in CN as signals, we can identify the space of
all signals with the vector space CN (see Definition 9.3.1). That observation leads to the
following definition.

Definition 9.6.1. For signals f, g : Z/(N) → C, written in vector form f =

 f(0)
...

f(N − 1)


and g =

 g(0)
...

g(N − 1)

, we define the inner product of f and g to be

⟨f, g⟩ = 1

N

N−1∑
n=0

f(n)g(n), (9.6.1)

where g(n) denotes the complex conjugate of g(n).

The inner product on signals has properties very similar to those of the real-valued dot
product with which you may be more familiar.

Theorem 9.6.2. For signals f, fi, g, gi : Z/(N) → C (i = 1, 2) and a, b ∈ C, we have that

⟨af1 + bf2, g⟩ = a ⟨f1, g⟩+ b ⟨f2, g⟩ ,
⟨f, ag1 + bg2⟩ = a ⟨f, g1⟩+ b ⟨f, g2⟩ ,

(9.6.2)

where a and b are the complex conjugates of a and b, respectively.

In other words, the inner product ⟨f, g⟩ is linear in the first variable and almost linear
in the second variable. (Not that you really need to know this, but for the record, properly
speaking, we say that ⟨f, g⟩ is skew-linear in the second variable.)

Proof. Problem 9.6.1.

The reason we introduce the inner product on CN is to be able to define the following
idea.

Definition 9.6.3. Let {f1, . . . , fk} be a set of signals fi : Z/(N) → C. To say that
{f1, . . . , fk} is an orthonormal set means that:

9.6. INNER PRODUCTS AND ORTHOGONALITY 213

1. Whenever i ̸= j, ⟨fi, fj⟩ = 0; and

2. For all i, ⟨fi, fi⟩ = 1.

We introduce Definition 9.6.3 with the following example in mind. Recall (Defini-
tion 9.3.2) that for k ∈ Z/(N), the basic trigonometric signals ek are defined in vector
form to be

ek =


1
ωk

...

ω(N−1)k

 . (9.6.3)

We then have that:

Theorem 9.6.4. The set {e0, e1, . . . , eN−1} is an orthonormal set.

Proof. Problem 9.6.2.

The following is one of the key properties of orthonormal sets.

Theorem 9.6.5. Let {f1, . . . , fk} be an orthonormal set of signals. Then {f1, . . . , fk} is
linearly independent.

Proof. Problem 9.6.3.

Corollary 9.6.6. The set {e0, e1, . . . , eN−1} is a basis for the space CN of all possible
signals.

Proof. Problem 9.6.4.

Corollary 9.6.6 means that every signal f : Z/(N) → C is a linear combination of the
ek, since the ek span the space of all possible signals. So what are the coefficients of that
linear combination? Yup, you guessed it — they’re precisely the Fourier coefficients f̂(k).
That is:

Theorem 9.6.7. Let f : Z/(N) → C be a signal, and suppose that

f = a0e0 + . . . aN−1eN−1, (9.6.4)

where a0, . . . , aN−1 ∈ C. Then for k ∈ Z/(N), we have

ak = ⟨f, ek⟩ =
N−1∑
n=0

f(n)ek(n) = f̂(k). (9.6.5)

Proof. Problem 9.6.5.

Comparing (9.6.5) and (9.6.4) with Definition 9.4.1 and the Inversion Theorem 9.4.4,
we see that Theorem 9.6.7 is precisely the Inversion Theorem written in vector notation, as
promised.

214 CHAPTER 9. THE DISCRETE FOURIER TRANSFORM

Remark 9.6.8. As in earlier sections (see ??), all of the material in this section can be
modified to work with the finite field Fq and a primitive element ω of Fq in place of C
and a primitive Nth root of unity, where N = q − 1. The principal change is that the dot
product on signals f, g : Z/(N) → Fq is now defined to be

⟨f, g⟩ = 1

N

N−1∑
n=0

f(n)g(n)−1. (9.6.6)

That inverse on g(n)−1 causes a number of problems! But they aren’t insurmountable; see
Problem 9.6.6 for details.

Problems

9.6.1. (Proves Theorem 9.6.2) For signals f, g : Z/(N) → C, let

⟨f, g⟩ = 1

N

N−1∑
n=0

f(n)g(n). (9.6.7)

Suppose that f, fi, g, gi : Z/(N) → C (i = 1, 2) are signals and a, b ∈ C.

(a) Prove that ⟨af1 + bf2, g⟩ = a ⟨f1, g⟩+ b ⟨f2, g⟩.
(b) Prove that ⟨f, ag1 + bg2⟩ = a ⟨f, g1⟩+ b ⟨f, g2⟩.

9.6.2. (Proves Theorem 9.6.4) Let ⟨f, g⟩ be defined by (9.6.7), as in Problem 9.6.1, and

for 0 ≤ k ≤ N − 1, let ek =


1
ωk

...

ω(N−1)k

.
(a) Prove that ⟨ek, ek⟩ = 1.

(b) Prove that for j ̸= k, we have ⟨ej , ek⟩ = 1. (Suggestion: Orthogonality Lemma 9.3.4.)

9.6.3. (Proves Theorem 9.6.5) Let ⟨f, g⟩ be defined by (9.6.7), as in Problem 9.6.1, and
suppose that {e0, e1, . . . , eN−1} is an orthonormal set (but not necessarily the one from
Problem 9.6.2). Prove that {e0, e1, . . . , eN−1} is linearly independent. (Suggestion: Use the
approach from Remark 5.3.11, combined with the inner product.)

9.6.4. (Proves Corollary 9.6.6) From Theorem 9.6.5, we know that {e0, e1, . . . , eN−1} is a
linearly independent subset of CN . Prove that {e0, e1, . . . , eN−1} is actually a basis for CN .
(Suggestion: Use Section 5.6.)

9.6.5. Suppose {e0, e1, . . . , eN−1} is an orthonormal set (but not necessarily the one from
Problem 9.6.2). Let f : Z/(N) → C be a signal, and suppose that

f = a0e0 + . . . aN−1eN−1, (9.6.8)

where a0, . . . , aN−1 ∈ C. Prove that for k ∈ Z/(N), we have ⟨f, ek⟩ = ak.

9.6. INNER PRODUCTS AND ORTHOGONALITY 215

9.6.6. Let Fq be the finite field of order q (Definition 7.6.19), let N = q − 1, and let ω be
a primitive element of Fq (Definition 7.6.8). (By Theorem 7.6.9, such an ω must exist and
have order N .) For suitable signals f, g : Z/(N) → Fq, let

⟨f, g⟩ = 1

N

N−1∑
n=0

f(n)g(n)−1. (9.6.9)

The goal of this problem is to adapt Problems 9.6.1–9.6.1 to this new setting.

(a) When we say “suitable signals” above, we mean that not every pair of signals f, g :
Z/(N) → Fq will actually work when plugged into (9.6.9). Exactly when is ⟨f, g⟩
defined? Explain.

(b) Consider Theorem 9.6.2. Only one of the properties in (9.6.2) still holds for the finite
field version of ⟨f, g⟩ defined in (9.6.9) — which is it? Prove the property that still
works.

(c) For k ∈ Z/(N), let

ek =


1
ωk

...

ω(N−1)k

 . (9.6.10)

Prove that {e0, e1, . . . , eN−1} is an orthonormal set. (Suggestion: Finite Fields Or-
thogonality Lemma ??.)

(d) Do the finite fields version of Problems 9.6.3 and 9.6.4. What, if anything, changes?

(e) Do the finite fields version of Problem 9.6.5. What, if anything, changes?

216 CHAPTER 9. THE DISCRETE FOURIER TRANSFORM

Chapter 10

Groups

To me, a story can be both concrete and abstract, or a concrete story can hold
abstractions.

— David Lynch

10.1 Groups and subgroups

Definition 10.1.1. A group is a set G along with a binary operation ·, usually written as
multiplication, such that the following axioms are satisfied.

1. (Associativity) For any a, b, c ∈ G, (ab)c = a(bc).

2. (Identity) There exists an element 1 ∈ G such that 1a = a = a1 for all a ∈ G.

3. (Inverses) For every a ∈ G, there exists some a−1 ∈ G such that aa−1 = 1 = a−1a.

Definition 10.1.2. Let G be a group. To say that G is abelian means that for all a, b ∈ G,
we have that ab = ba.

While nonabelian groups are important, in this book, we only really care about abelian
groups, and you are welcome to think of all groups as being abelian. However, all of the
theory we consider works for nonabelian groups with no extra effort, so we’ll just state and
prove results for the general, possibly nonabelian, case.

Remark 10.1.3. If you have previous experience with groups, you may remember that
abelian groups are sometimes written additively, with a+ b replacing a · b, identity written
as 0, and inverses written as negatives. In this notation, the first four axioms of a ring
(Definition 4.2.2) say precisely that if R is a ring, then R with the operation + is an abelian
group. However, to avoid needlessly confusing readers unfamiliar with groups, we’ll stick
to multiplicative examples only.

217

218 CHAPTER 10. GROUPS

Notation 10.1.4. We can extend the usual notation of exponents to an arbitrary group.
That is, for a positive integer n, we can abbreviate

an =

n times︷ ︸︸ ︷
a · · · · · a,

a−n =

n times︷ ︸︸ ︷
a−1 · · · · · a−1,

a0 = 1.

(10.1.1)

You can check that the usual laws of exponents for a fixed base a apply in an arbitrary
group; the details are mildly tedious but straightforward, so we’ll omit them.

The following class of examples is the reason that we are suddenly interested in groups.

Example 10.1.5. Let R be a ring, and let U(R) be the set of all units of R. Because
the product of two units is a unit (see Problem 4.2.7), the multiplication operation · of R
defines an operation on U(R). We now check that U(R), with the operation ·, is a group.

1. For a, b, c ∈ U(R), (ab)c = a(bc) because multiplication is associative in all of R, and
therefore in U(R).

2. The multiplicative identity 1 of R is a unit, so U(R) has an identity element.

3. By definition, every unit has an inverse, which is itself a unit, so every element of
U(R) has an inverse in U(R).

Note that if F is a field, then U(F) = F×, the multiplicative group of F (Definition 7.6.6).
(And now, hopefully, the use of the word “group” in that name makes a little more sense.)

More precisely, we don’t so much need to study an entire group U(R) or F× as we need
to study parts of it, or more precisely, certain subgroups of F×, which we now sort of define
twice. We first consider the morally correct definition.

Definition 10.1.6. Let G be a group. A subgroup of G is a subset of G that is itself a
group, using the same operation as G.

Notation 10.1.7. We use the notation H ≤ G to say that H is a subgroup of a group
G. The point of using ≤ is to distinguish between H being a subgroup of G and H being
merely a subset of G (H ⊆ G).

On the plus side, Definition 10.1.6 is succinct and generalizes to almost every other
algebraic object, in that if a foo is some kind of algebraic object, then a subfoo is a subset
of a foo that is itself a foo, using the same operation(s) as the larger foo. (See: subring,
subfield, and so on.) On the minus side, Definition 10.1.6 is not that helpful if you want
to figure out if a particular subset of a group G is actually a subgroup of G. For that
purpose, we have the following theorem, which you can think of as an equivalent definition
of subgroup.

10.1. GROUPS AND SUBGROUPS 219

Theorem 10.1.8 (Subgroup Theorem). Let G be a group, and let S be a subset of G. Then
S is actually a subgroup of G if and only if all three of the following conditions hold.

1. (Identity) 1 ∈ S (i.e., S contains the multiplicative identity of G).

2. (Multiplicative closure) S is closed under the operation of G, i.e., if a, b ∈ S, then
ab ∈ S.

3. (Inverse closure) S is closed under taking inverses, i.e., if a ∈ S, then a−1 ∈ S.

Proof. On the one hand, if S is a subgroup of G, then the above three conditions must hold
in S because of the axioms of a group.

On the other hand, suppose the three conditions hold. Because of multiplicative closure,
the operation of G defines an operation on S (otherwise we would have no hope of turning
S into a group using this operation). Associativity holds for any a, b, c ∈ S because it holds
for any a, b, c ∈ G, and the identity and inverse axioms of a group hold in S by the identity
and inverse closure conditions.

For the DFT and FFT, we are primarily interested in the following group.

Definition 10.1.9. We define Cn to be the set of all nth roots of unity in C. In other
words:

Cn = {z ∈ C | zn = 1} . (10.1.2)

As we saw in Theorem 9.2.3, if ω = e2πi/n, then

Cn =
{
1, ω, ω2, . . . , ωn−1

}
. (10.1.3)

Theorem 10.1.10. For n, k ∈ N, we have that:

1. Cn is a subgroup of C×, the multiplicative group of the complex numbers; and

2. If k divides n, then Ck is a subgroup of Cn.

Note that statement (2) of Theorem 10.1.10 is important to us because subgroup chains
like

C1 ≤ C2 ≤ C4 ≤ C8 ≤ C16 ≤ · · · (10.1.4)

are what we’ll use to describe the Fast Fourier Transform.

Proof. Problem 10.1.1 shows that:

1. Cn contains the complex number 1;

2. Cn is closed under multiplication; and

3. Cn is closed under inverses.

The first statement of the Theorem 10.1.10 then follows from the Subgroup Theorem 10.1.8.
As for the second statement, if zk = 1 and n = kd, then zn = zkd = (zk)d = 1, which means
that Ck is a subset of Cn. The theorem follows.

220 CHAPTER 10. GROUPS

Another way of thinking about the group Cn as a subgroup of C× is in terms of the
following fundamental idea, of which we already saw a special case in Definition 7.6.7.

Definition 10.1.11. Let G be a group and a an element of G. We define the cyclic subgroup
generated by a to be

⟨a⟩ = {an | n ∈ Z} , (10.1.5)

the set of all powers of a, positive, negative, and zero (see Notation 10.1.4). If ⟨a⟩ happens
to be equal to the entirety of G, we say that G is cyclic, and that G is generated by a.

Theorem 10.1.12. Let G be a group, and let a be an element of G. Then ⟨a⟩, the cyclic
subgroup generated by a, is a subgroup of G.

Proof. Problem 10.1.2 shows that:

1. ⟨a⟩ contains the multiplicative identity 1;

2. ⟨a⟩ is closed under multiplication; and

3. ⟨a⟩ is closed under inverses.

The theorem then follows from the Subgroup Theorem 10.1.8.

Example 10.1.13. For a positive integer n, let ωn = e2πi/n. Then Theorem 9.2.3 says that
Cn = ⟨ωn⟩, and therefore, that Cn is cyclic.

Problems

10.1.1. Let Cn = {z ∈ C | zn = 1}.

(a) Prove that 1 ∈ Cn.

(b) Prove that if z, w ∈ Cn, then zw ∈ Cn.

(c) Prove that if z ∈ Cn, then z−1 ∈ Cn.

10.1.2. Let G be a group, and let ⟨a⟩ = {an | n ∈ Z}.

(a) Prove that 1 ∈ ⟨a⟩.
(b) Prove that if b, c ∈ ⟨a⟩, then bc ∈ ⟨a⟩.
(c) Prove that if b ∈ ⟨a⟩, then b−1 ∈ ⟨a⟩.

10.2 Orders of elements

Remember that in Definition 7.6.10, we saw a special case of the following definition.

Definition 10.2.1. Let G be a group and let a be an element of G. If an = 1 for some
positive integer n, we define the order of a to be the smallest possible n such that an = 1.
Otherwise, if an ̸= 1 for all positive integers n, we say that a has infinite order.

10.2. ORDERS OF ELEMENTS 221

We begin with an observation about orders and exponents.

Theorem 10.2.2. Let G be a group and let a be an element of G of finite order n. Then
the expression ak depends precisely on the congruence class of k mod n. In other words,
k = ℓ in Z/(n) if and only if ak = aℓ.

As a consequence, the expression ak is unambiguous even if k is in Z/(n) and not an
ordinary integer.

Proof. Suppose a has order n, and suppose that k = ℓ in Z/(n), or in other words, suppose
that k = ℓ+ qn for some integer q. Then

ak = aℓ+qn = aℓaqn = aℓ (an)q = aℓ1q = aℓ. (10.2.1)

Conversely, suppose ak = aℓ. If we let m = k − ℓ, we see that it suffices to show that if
am = 1, then m = qn for some q ∈ Z. However, in that case, by the Division Theorem 2.3.1,
let m = qn+ r with 0 ≤ r < n. Then

ar = am−qn = am (an)q = 1 · 1q = 1. (10.2.2)

However, by definition, n is the smallest positive integer n such that an = 1. Since 0 ≤ r <
n, it follows that r = 0, and therefore, that m = qn. The theorem follows.

Since a0 = 1, Theorem 10.2.2 immediately implies:

Corollary 10.2.3. Let G be a group and let a be an element of G of finite order n. Then
ak = 1 if and only if and only if k = 0 in Z/(n), or in other words, if and only if k is a
multiple of n.

In this section and the next, we justify several properties of the order of an element
(see Theorem 7.6.11) that we used back in Section 7.6. Again, recall that the order of an
algebraic object (e.g., a group) is the number of elements in that algebraic object. We begin
by proving part (1) of Theorem 7.6.11.

Corollary 10.2.4. Let G be a group and let a be an element of G of finite order n. Then
the cyclic subgroup ⟨a⟩ contains n elements (i.e., has order n).

Proof. By Definition 10.1.11, the elements of ⟨a⟩ are precisely the powers of a. By Theo-
rem 10.2.2, the powers of a are in bijective correspondence with the elements of Z/(n); in
particular, there are n such powers.

The Order of a Power Formula (part (2) of Theorem 7.6.11) takes a bit more work.

Theorem 10.2.5 (Order of a Power Formula). Let G be a group and let a be an element

of G of finite order n. Then the order of ak is
n

gcd(k, n)
.

Proof. Let k = dm, where d = gcd(k, n) and gcd(m,n) = 1. The theorem then follows from
two separate statements:

222 CHAPTER 10. GROUPS

1. If d divides n, then the order of ad is n/d.

2. If gcd(m,n) = 1, then the order of am is still n.

Both of these statements are proven in Problem 10.2.1.

The remaining part of Theorem 7.6.11 is deeper than the other two, so we’ll wait until
the next section to prove it.

Problems

10.2.1. (Proves Theorem 10.2.5) Let G be a group and let a be an element of G of finite
order n.

(a) Suppose d > 0 divides n. Explain why the order of ad is n/d. (Suggestion: Use the
definition of order.)

(b) Suppose gcd(m,n) = 1. Prove that the order of am is still n. (Suggestion: Use the
facts that (am)k = 1 if and only if km = 0 in Z/(n), and that m is a unit in Z/(n)
(why?).)

10.3 Cosets

We have already seen the additive version of the idea of coset back in Section 7.2, where
we used cosets to define the quotient ring R/I. While that was important for ring theory,
cosets turn out to be even more fundamental in group theory. As usual, we begin with the
definition.

Definition 10.3.1. Let G be a group, and let H be a subgroup of G. For a ∈ G, we define
the left multiplicative coset aH to be

aH = {ah | h ∈ H} . (10.3.1)

If the context is clear, instead of saying “left multiplicative coset”, we just say coset. (In
particular, since we mainly care about abelian groups, we won’t worry too much about left
cosets vs. right cosets.)

As always, the first thing you should do when you see a new abstract definition is to
make up an example and play around with it.

Example 10.3.2. Let G = F×
13, the multiplicative group of F13, and let H = ⟨5⟩, the cyclic

subgroup of G generated by 5 ∈ G. Since 52 = 12, 53 = 8, and 54 = 1 (mod 13), we see
that

H = {1, 5, 12, 8} . (10.3.2)

Choosing (randomly) 6 ∈ G, we see that

6H = {6, 30, 72, 48} = {6, 4, 7, 9} (mod 13). (10.3.3)

10.3. COSETS 223

Choosing (again randomly) 7 ∈ G, we see that

7H = {7, 35, 84, 56} = {7, 9, 6, 4} (mod 13), (10.3.4)

which is the same set as 6H, just written in a different order; in other words, 7H = 6H.
It turns out that to get a different coset, we need to choose a representative not already

contained in H or 6H, so let’s try 3 ∈ G:

3H = {3, 15, 36, 24} = {3, 2, 10, 11} (mod 13). (10.3.5)

Note that G = H ∪ 6H ∪ 3H, and that all three cosets are disjoint.

In most beginning courses in abstract algebra, cosets are used to prove various funda-
mental results about groups, such as Corollaries 10.3.11 and 10.3.12. While we’ll do that as
well, our main applications of cosets stem from (a) understanding the fact that the cosets
of a subgroup H of a group G partition G (Theorem 10.3.7) and (b) understanding the
definition of cosets.

Theorem 10.3.3. Let H be a subgroup of a group G, and let a be an element of G. If b is
an element of aH, then aH = bH.

Proof. Suppose b ∈ aH, or in other words, b = ah0 for some h0 ∈ H. Then for any bh ∈ bH,
since H is closed under multiplication, bh = a(h0h) ∈ AH; and for any ah ∈ aH, since H
is closed under multiplication and inverses, ah = b(h−1

0 h) ∈ bH. The theorem follows.

Theorem 10.3.3 motivates the following definition.

Definition 10.3.4. Let H be a subgroup of a group G, and let a be an element of G. A
representative of the coset aH is an element b of aH. Note that by Theorem 10.3.3, if b is
a representative of aH, then bH is an alternate name for aH.

Theorem 10.3.3 also has the following important corollary.

Corollary 10.3.5. Let H be a subgroup of a group G, and let a and b be an element of G.
Then aH and bH are either disjoint or equal.

In other words, cosets are either disjoint are equal.

Proof. If aH and bH are not disjoint, then there exists some g ∈ aH ∩ bH, and by Theo-
rem 10.3.3, aH = gH = bH.

Putting all of this nonsense together, we have the following important picture: Given a
group G and a subgroup H, we can partition G into cosets of H, as shown in Figure 10.3.1.
The point is that every element of G appears in exactly one coset, which means that, for
example, we can “divide and conquer” a sum over G by summing over each coset and
summing the totals from each coset, without worrying about missing an element of G or
counting an element of G twice.

To be precise:

224 CHAPTER 10. GROUPS

G =

H aH bH

cH dH gH

Figure 10.3.1: A group G partitioned into six cosets of a subgroup H

Definition 10.3.6. Let X be a set, and let {A1, . . . , An} be a collection of subsets of X.
To say that {A1, . . . , An} partition X means that:

1. (Nonempty) Each Ai ̸= ∅;

2. (Cover) X =
n⋃

i=1

Ai (i.e., X is the union of the Ai); and

3. (Pairwise disjoint) If i ̸= j, then Ai ∩Aj = ∅.

Theorem 10.3.7. Let G be a finite group and let H be a subgroup of G. Consider all
left cosets of H, and choose one element ai from each coset of H so that {a1H, . . . , anH}
contains each coset of H exactly once. Then {a1H, . . . , anH} partitions G.

Proof. Comparing Definition 10.3.6, we first observe that each coset aiH is nonempty be-
cause ai ∈ aiH. Next, any g ∈ G is contained in gH, which must be equal to some aiH
because of the way we chose the ai. Finally, Corollary 10.3.5 implies that the aiH are
pairwise disjoint.

Definition 10.3.8. Let G be a finite group, and let H be a subgroup of G. A choice of
coset representatives like the set {a1, . . . , an} in the statement of Theorem 10.3.7 is called
a transversal for H in G. In other words, to say that {a1, . . . , an} is a transversal for H in
G means that

G = a1H ∪ · · · ∪ anH (10.3.6)

and that for i ̸= j, aiH ∩ ajH = ∅ (i.e., aiH and ajH are disjoint).

Example 10.3.9. Returning to the example G = U13, H = ⟨5⟩ of Example 10.3.2, we see
that {1, 6, 3} is a transversal for H in G, as are {1, 7, 3}, {12, 9, 10}, and so on.

As promised, we finish this section by using Theorem 10.3.7 to prove a few fundamen-
tal facts about finite groups, including Lagrange’s Theorem (part (3) of Theorem 7.6.11).
Again, theory is not our main focus, but it takes relatively little effort, so why not, right?
We begin with a small but important observation, which you’ll realize is true as soon as
you try any examples.

Lemma 10.3.10. Let G be a finite group, let H be a subgroup of G, and let a be an element
of G. The coset aH has the same number of elements as H does, and therefore, all cosets
contain the same number of elements.

10.3. COSETS 225

Proof. Problem 10.3.6.

As a consequence, we have the following corollaries (Corollaries 10.3.11 and 10.3.12),
either of which could be called Lagrange’s Theorem.*

Corollary 10.3.11. Let G be a finite group, and let H be a subgroup of G. Then the order
of H (number of elements in H) divides the order of G.

Proof. Let k be the order of H and let n be the order of G. By Theorem 10.3.7, G can be
partitioned into a finite number (say, q) pieces, each of size k. It follows that n = qk.

Corollary 10.3.12. Let G be a finite group of order N , and let a be an element of G. Then
the order of a divides N .

Proof. This follows from Corollary 10.3.11 and the fact that the order of a is equal to the
order of the subgroup ⟨a⟩ (Theorem 10.2.4).

Problems

10.3.1. Let ω = e2πi/12, and consider the subgroups C2 and C6 of C12. (In fact, C2 ≤ C6 ≤
C12.)

(a) What are the elements of C2 in terms of ω = e2πi/12? Explain. And what are the
elements of C6 in terms of ω?

(b) Write C12 as a disjoint union of cosets of C2.

(c) Find a transversal for C2 in C12. See if you can find one chosen by some orderly
method.

(d) Find a transversal for C2 in C6.

(e) Find a transversal for C6 in C12.

10.3.2. Let ω = e2πi/18, and consider the subgroups C3 and C6 of C18. (In fact, C3 ≤ C6 ≤
C18.)

(a) What are the elements of C3 in terms of ω = e2πi/18? Explain. And what are the
elements of C6 in terms of ω?

(b) Write C18 as a disjoint union of cosets of C3.

(c) Find a transversal for C3 in C18. See if you can find one chosen by some orderly
method.

(d) Find a transversal for C3 in C6.

(e) Find a transversal for C6 in C18.

10.3.3. Consider the subgroup H = ⟨2⟩ in F×
31.

*As usual with theorem-naming, Lagrange didn’t prove either of these facts as such, just an early ancestor
of them; see Roth [?]. But hey, we still call them, and other related things, Lagrange’s Theorem.

226 CHAPTER 10. GROUPS

(a) List all of the elements of H (the powers of 2 (mod 31)).

(b) Write F×
31 as a disjoint union of cosets of H.

(c) Find a transversal for H in F×
31.

10.3.4. Let F9 = F3[i], where i is a root of m(x) = x2 + 1, and consider the subgroup
H = ⟨i⟩ in F×

9 .

(a) List all of the elements of H.

(b) Write F×
9 as a disjoint union of cosets of H.

(c) Find a transversal for H in F×
9 .

10.3.5. Let F16 = F2[α], where α is a root of m(x) = x4+x+1, and consider the subgroup
H =

〈
α2 + α

〉
in F×

16.

(a) List all of the elements of H.

(b) Write F×
16 as a disjoint union of cosets of H.

(c) Find a transversal for H in F×
16.

10.3.6. Let G be a group, let H be a subgroup of G, and let a be an element of G. Define
a function f : H → aH by

f(h) = ah (10.3.7)

for all h ∈ H. To prove that H and aH have the same number of elements, it suffices to
show that f is a bijection (one-to-one and onto).

(a) Explain why f is onto (surjective).

(b) Prove that f is one-to-one. (Suggestion: Suppose f(h1) = f(h2). Why can we then
conclude that h1 = h2?)

10.4 Public-key cryptography and the discrete log problem

Before we get into the algebra of public-key cryptography, we first need to discuss the basic
setup involved.

Suppose Alice and Bob have a communicatios channel over which they want to com-
municate secretly. Now, if they shared some secret piece of information in common, like a
password or other encryption key, we take it as given that they would be able to communi-
cate without Eve hearing through the use of private-key cryptography. However, if Alice and
Bob haven’t previously communicated a shared private key, they face a Catch-22: To share
a private key without Eve finding it out, they need some kind of encrypted communications
channel, for which they need to share a private key. . . .

So how do we get around this problem? Well, in the 1970’s�, Diffie and Hellman [?]
devised a way for Alice and Bob to share a piece of information in full public view of Eve

�Diffie and Hellman’s work marked the public origin of public-key cryptography, but very similar ideas
were first devised at the British intelligence agency GCHQ a few years earlier; see blah [?] for an account.

10.4. PUBLIC-KEY CRYPTOGRAPHY AND THE DISCRETE LOG PROBLEM 227

but, paradoxically, still keep that piece of information hidden from Eve. Their key idea was
to make use of what is known as a one-way trapdoor function, which is a function that is
invertible in theory, but whose inverse takes an impossibly long time to compute unless you
happen to know a secret key.

To be specific, their scheme, which is still in widespread use today, can be explained in
group-theoretic terms as follows.

Algorithm 10.4.1 (Cyclic group Diffie-Hellman). Given a cyclic group G with generator
a of order n:

1. Alice chooses a secret integer x such that gcd(x, n) = 1 and also chooses some z such
that xz = 1 (mod n).

2. Alice “broadcasts” (makes the world aware of, by some means) the value b = ax. The
group element b ∈ G becomes a sort of public “mailbox” that the world can use to
communicate securely with Alice.

3. To establish a secure channel with Alice, Bob chooses some integer y with the goal of
secretly sharing the piece of information ay with Alice.

4. Bob then calcuates c = by and transmits c to Alice.

5. Alice then calculates cz, which should then be the shared piece of information ay.

Now, it might not be your first thought to use an element of a group as a shared secret
key of some sort. However, if you think about it, any kind of practical implementation
of computation in a group G involves representing the elements of G as sequences of bits
in some way, and if n is large, then those bit sequences are just as good as any other bit
sequence that you might use as a shared secret key, right? In any case, putting secrecy
aside for the moment, the first order of business is to check that the algorithm really does
let Alice and Bob share the piece of information ay.

Theorem 10.4.2. In the notation of Algorithm 10.4.1, we have cz = ay. (In other words,
Diffie-Hellman works as advertised.)

Proof. For the proof and a discussion of other details of Diffie-Hellman, see Problem 10.4.1.

Now, to be fair, to the uninitiated, Algorithm 10.4.1 might not seem very practical:
Where would you find a cyclic group just lying around the house or whatever? But you, a
veteran of Chapter 7 (especially Section 7.6), know the secret: The multiplicative group of
a finite field is cyclic, so we can take G to be F×

p , or more generally, F×
q . See Problem 10.4.2

and 10.4.3 for the details.

Perhaps more importantly, just having some strange complicated way to share a piece
of information ay isn’t very useful if the eavesdropper Eve can also figure out what ay is.
However, looking at Algorithm 10.4.1 closely, we see that since Eve only overhears Alice’s

228 CHAPTER 10. GROUPS

“mailbox” b = ax and Bob’s transmission c = axy, Eve can’t figure out ay without more
work.

Of course, if Eve knew what x was, she could figure out z just like Alice did and recover
the secret information ay. Therefore, the security of Diffie-Hellman relies on the following
problem being difficult to solve efficiently.

Problem 10.4.3 (Discrete logarithm problem). Let G be a cyclic group with generator a
(i.e., G = ⟨a⟩), and suppose a has order n. The discrete logarithm problem for G to the
base a is: Find an algorithm that, given b = ax, determines the value of x (mod n).

Specifically, if G = F×
q for some q = pe (p prime), and G = F×, the multiplicative group

of F , then there is no known efficient algorithm for solving Problem 10.4.3 (references).
(Well, outside of the use of a quantum computer, of which there is no publicly known
example of a practical size, as of this writing in 2024; see (references).) For example, if
q = p for (say) an industrial-size prime in the hundreds of digits, the kind of log-antilog
table we saw in Section 7.7 would have more entries than there are particles in the universe.

Diffie-Hellman can also be applied to an abelian group written in additive notation,
which works as follows:

� Instead of ab, we write a+ b.

� Instead of an, we write na as an abbreviation for a added to itself n times.

� Instead of a multiplicative identity 1, we have an additive identity 0.

� Instead of a−1, we write −a.

So the associative, identity, inverse, and commutative properties look like:

(a+ b) + c = a+ (b+ c)

a+ 0 = a = 0 + a

a+ (−a) = 0 = (−a) + a

a+ b = b+ a.

(10.4.1)

As you can see, an additive abelian group works just like addition in a ring; in fact,
you can combine the first four axioms of a ring (Definition 4.2.2) into one axiom saying
that a ring is an additive abelian group under the operation +. In any case, if you rewrite
Diffie-Hellman in additive notation, it may look a little different, but it works exactly the
same; see Problem 10.4.4 for details.

So if additive Diffie-Hellman is just the same algorithm, why bother to write it out in a
new notation? Well, it turns out that the solution set to an equation like

y2 = x3 + 2, (10.4.2)

known as an elliptic curve, which when considered over a finite field (say, F7) gives an
additive abelian group that is quite naturally useful for Diffie-Hellman and other kinds of

10.4. PUBLIC-KEY CRYPTOGRAPHY AND THE DISCRETE LOG PROBLEM 229

cryptography schemes. Currently (2024), experts believe that Diffie-Hellman is at least as
secure as other similar crytography schemes (e.g., Diffie-Hellman in F×

p), and possibly more
so, but for now, this hasn’t been proven either way. See Koblitz [?] for much more on elliptic
curve Diffie-Hellman and other elliptic curve encryption algorithms.

Problems

10.4.1. This problem works out some of the key details in the Diffie-Hellman algorithm.
In the notation of Algorithm 10.4.1:

(a) How can Alice ensure that gcd(x, n) = 1 and find z such that xz = 1 (mod n)?

(b) Why is αxyz = αy? Does Bob also need to choose y such that gcd(y, n) = 1?

10.4.2. Consider the case of Algorithm 10.4.1 where G = F×
p for some prime p. Rewrite

the description of Algorithm 10.4.1 completely in terms of calculations (mod p), without
reference to any group-theoretic terminology.

10.4.3. Consider the case of Algorithm 10.4.1 where G = F×
q for p prime and q = pe.

Rewrite the description of Algorithm 10.4.1 completely in terms of calculations in Fq, with-
out reference to any group-theoretic terminology.

10.4.4. Rewrite Algorithm 10.4.1 for an abelian group using additive notation. Think
carefully about what terms mean in an additive context, e.g., what does it mean for a to
be a generator for G?

10.4.5. Think about what makes Algorithm 10.4.1 work. Does G really have to be cyclic?
Why or why not? (I.e., what happens if you remove that condition on G?) Does G really
have to be abelian? Why or why not?

230 CHAPTER 10. GROUPS

Chapter 11

Even faster: The Fast Fourier
Transform

If you want to make any progress in life, go as far as any reasonable person
would go and then keep going.

— John Horton Conway

Higher. Further. Faster. More.

— Carol Danvers, Captain Marvel, Kelly Sue Deconnick

11.1 Can we make multiplication faster?

The Fast Fourier Transform (FFT) has been cited as one of the ten most important algo-
rithms of the 20th century, and its applications are almost too numerous to mention (though
?? does a pretty good job of mentioning them). However, because this is an algebra book,
we’ll use a motivating problem that’s easy to describe: multiplying large numbers.

Motivating Problem 11.1.1. Using the standard grade-school algorithm for long multi-
plication, the time required to multiply two N -digit numbers is O(N2) (see Problem 11.1.1).
Is there a faster algorithm for multiplying two N -digit numbers, e.g., an algorithm that’s
O(N logN)?

If you give Problem 11.1.1 proper consideration, it should blow your mind. How could
there possibly be a new and dramatically faster way to perform a calculation that people
have probably been doing for thousands of years? Nonetheless, in 1971, Schönhage and
Strassen (reference?) devised a practical method for multiplying two N -digit numbers that
doesn’t quite get the time required down to O(N logN), but is pretty close. As we’ll see,
the key idea is that the Discrete Fourier Transform (DFT) reduces standard multiplication
to an O(N) operation and so the bottleneck becomes the DFT itself, a problem solved by
the FFT. We start that discussion in our next section.

New 2019 development: Integer multiplicationN logN by Harvey and van der Hoven [?],
though not yet practical.

231

232 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

Problems

11.1.1. Recall the usual grade-school algorithm for multiplication of two N -digit numbers.

(a) Suppose we multiply 1,234 × 5,432. Carefully count the number of single-digit mul-
tiplications and the number of additions that are required to carry out the usual
grade-school algorithm on these two numbers. (Ignore carrying.)

(b) Generalize the previous part to see how long it takes to multiply two N -digit numbers.
How many single-digit multiplications, as a function of N? Find an upper bound for
the number of additions as well (easier than the exact number). (You can again ignore
carrying, which is an O(N) factor, but in perhaps a non-obvious way.)

11.2 The Fast Fourier Transform

As mentioned in the previous section, we now have the following motivating problem.

Motivating Problem 11.2.1. If we can speed up the computation of the DFT, we can
speed up multiplication of polynomials of degree N , and therefore, multiplication of N -digit
numbers.

The basic method of speeding up the DFT is called the Fast Fourier Transform, or FFT.
The idea is due to Cooley and Tukey, though our description of it is based on Diaconis and
Rockmore. Before we can get to our description, however, we need to establish some notation
and a few facts about subgroup chains in CN (the group of Nth roots of unity). As you
may remember (see Section 9.2), for fixed N , CN is a cyclic group of order N , generated
by ω = e2πi/N . We have the following useful observation about subgroups of CN .

Theorem 11.2.2. Fix a positive integer N and let ω = e2πi/N . If N = dq for positive
d, q ∈ Z, then Cd (the group of complex dth roots of unity) is precisely ⟨ωq⟩, the subgroup
of CN generated by ωq.

Proof. For N = dq as stated, we have

ωq = (e2πi/N)q = e2πi(q/N) = e2πi/d. (11.2.1)

However, e2πi/d is precisely the natural complex dth root of unity that generates Cd.

Example 11.2.3. Consider the chain of subgroups C1 ≤ C2 ≤ C4 ≤ C8, and fix N = 8
and ω = e2πi/8. Then by Theorem 11.2.2, we have the subgroups

C1 =
〈
ω8
〉
= ⟨1⟩ = {1}

C2 =
〈
ω4
〉
=
{
1, ω4

}
C4 =

〈
ω2
〉
=
{
1, ω2, ω4, ω6

} (11.2.2)

of
C8 = ⟨ω⟩ =

{
1, ω, ω2, ω3, ω4, ω5, ω6, ω7

}
(11.2.3)

11.2. THE FAST FOURIER TRANSFORM 233

Keep Example 11.2.3 and its analogues for other values of N in mind as you try to
absorb how the following algorithm works.

Algorithm 11.2.4 (FFT). Fix N ∈ N and ω = e2πi/N . Let

C1 = H0 ≤ H1 ≤ · · · ≤ Hn−1 ≤ Hn = CN (11.2.4)

be a chain of subgroups of CN that starts at the trivial subgroup C1 = {1} and ends at
the group CN itself. We define the Fast Fourier Transform based on the subgroup chain
H0 ≤ · · · ≤ Hn as follows.

Throughout this algorithm, let x =

 x(0)
...

x(N − 1)

 represent the current state of our

calculation and let y =

 y(0)
...

y(N − 1)

 represent the new state of our calculation after the

current step. The goal is to start with x =

 f(0)
...

f(N − 1)

 and end with x =

 f̂(0)
...

f̂(N − 1)

.

1. Initialize. Set x =

 f(0)
...

f(N − 1)

.
2. Main loop. For i = 1 to n:

(a) Notation. Suppose that Hi−1 = ⟨ωm⟩ and Hi =
〈
ωk
〉
, where m and k are chosen

from Theorem 11.2.2; remember that the “big” exponent m corresponds to the
old, smaller subgroup Hi−1, and the “small” exponent k corresponds to the new,
bigger subgroup Hi. (Special case: For i = 1 and Hi−1 = H0 = {1}, we take
m = N .) Since Hi−1 ≤ Hi, we have that k divides m, or m = kd for some
positive integer d. Use the standard transversal 1, ωk, ω2k, . . . , ω(d−1)k for Hi−1

in Hi. (Note that d is the number of cosets of Hi−1 in Hi.)

(b) Fill entries of y corresponding to the new subgroup Hi. For j = 0 to (N/k)− 1
(i.e., jk ranges over all exponents of ω appearing in Hi, or ωjk ranges over all
elements of Hi), set

y(jk) =

d−1∑
r=0

x(jm+ rk)ω−rkj

= x(jm) + x(jm+ k)ω−kj + x(jm+ 2k)ω−2kj + . . .

+ x(jm+ (d− 1)k)ω−(d−1)kj .

(11.2.5)

234 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

As will be clearer in examples, in the sum on the right-hand side of (11.2.5),
we can think of jm as a “starting point” coming from the old subgroup Hi−1

and rk as “offsets” stepping through the exponents in the coset representatives
1, ωk, ω2k, . . . , ω(d−1)k. Note that in the expression x(jm + rk) in (11.2.5), we
calculate jm+ rk as an integer (mod N), so for example, as j ranges from 0 to
N/k, jm cycles through each of the integers 0,m, 2m, . . . , N−m exactly d times;
in other words, the “starting points” jm increase exactly d times as fast as the
“coset representatives” rk.

(c) Translate the subgroup fill to entries corresponding to the cosets of Hi in CN .
That is, do exactly the same filling as in step 2b, but with the indices of y and x
increased by 1, . . . , k−1. To be precise, for ℓ = 1 to k−1 and j = 0 to (N/k)−1,
we set

y(jk + ℓ) =

d−1∑
r=0

x(jm+ rk + ℓ)ω−rkj . (11.2.6)

Note that in principle (and certainly in any code that you would actually want
to run) we could actually combine this step and the previous step into one big
loop, starting with for ℓ = 0 to k−1, but we hope that separating the two makes
our algorithm slightly more human-readable.

(d) Set current state to new state and loop. Set x = y and go to the next step of the
main loop.

3. Rescale. Divide every entry of x by N .

Note that if we can show that Algorithm 11.2.4 actually always computes the DFT, then
essentially the same proof will show that if we change each ω−rkj to ωrkj and omit step 3,
the same algorithm computes the inverse DFT with the same big-O complexity.

Example 11.2.5. For anyN ∈ N, consider the FFT based on the subgroup chain C1 ≤ CN ;
in other words, H0 = C1 and H1 = CN . Note that since we only have one step in the
subgroup chain, n = 1. Therefore, stepping through the algorithm, we get:

1. Initialize. Set x =

 f(0)
...

f(N − 1)

.
2. Main loop. This has one step in it, with i = n = 1.

(a) Notation. Since H0 =
〈
ωN
〉
and H1 =

〈
ω1
〉
, we have m = N , k = 1, d = N , and

our coset representatives for H0 in H1 are 1, ω, ω2, . . . , ωN−1, or in other words,
the elements of G = CN .

(b) Fill entries of y corresponding to H1. Since d = N , k = 1, N/k = N , and m = 0
(mod N), for j = 0 to N − 1, set

y(j) =

N−1∑
r=0

x(r)ω−rj . (11.2.7)

11.2. THE FAST FOURIER TRANSFORM 235

(c) Translate to cosets. Since the only coset of H1 = CN in CN is itself, nothing
happens in this step.

(d) Set x = y.

3. Rescale. Divide every entry of x by N .

Comparing (11.2.7) and (9.4.1), we see that after the rescaling step, we indeed have

x =

 f̂(0)
...

f̂(N − 1)

. However, we have saved no time: Since we are doing exactly the same

computation as the regular DFT, this “FFT” is just the DFT in more complicated notation,
and is therefore still an O(N2) algorithm.

While Example 11.2.5 does reassure us that we haven’t gone completely off the deep end
here, we also see that if we don’t try to cut N up into small pieces, then no time savings
will occur.

We next consider a more typical, and more useful, example of an FFT.

Example 11.2.6. For N = 6, consider the FFT based on the subgroup chain C1 ≤ C2 ≤ C6

(so n = 2); that is, H0 = C1, H1 = C2, and H2 = C6. Stepping through the algorithm:

1. Initialize. Set x =

 f(0)
...

f(N − 1)

.
2. Main loop. This has two steps in it, with i = 1 and i = 2.

� i = 1.

(a) Notation. Since H0 =
〈
ω6
〉
and H1 =

〈
ω3
〉
, we have m = 6, k = 3, N/k = 2,

d = 2, with coset representatives 1, ω3.

(b) Fill entries of y corresponding to H1. Going from j = 0 to 1, we have

y(0) = x(0) + x(3)ω−0 = f(0) + f(3),

y(3) = x(0) + x(3)ω−3 = f(0) + f(3)ω−3.
(11.2.8)

(c) Translate to cosets. Similarly, we have

y(1) = x(1) + x(4)ω−0 = f(1) + f(4),

y(4) = x(1) + x(4)ω−3 = f(1) + f(4)ω−3,

y(2) = x(2) + x(5)ω−0 = f(2) + f(5),

y(5) = x(2) + x(5)ω−3 = f(2) + f(5)ω−3.

(11.2.9)

236 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

(d) Set

x = y =



f(0) + f(3)
f(1) + f(4)
f(2) + f(5)

f(0) + f(3)ω−3

f(1) + f(4)ω−3

f(2) + f(5)ω−3

 . (11.2.10)

� i = 2.

(a) Notation. Since H1 =
〈
ω3
〉
and H2 =

〈
ω1
〉
, we have m = 3, k = 1, N/k = 6,

d = 3, with coset representatives 1, ω, ω2.

(b) Fill entries of y corresponding to H2. Going from j = 0 to 5, we have

y(0) = x(0) + x(1)ω−0 + x(2)ω−0

= f(0) + f(3) + f(1) + f(4) + f(2) + f(5),

y(1) = x(3) + x(4)ω−1 + x(5)ω−2

= f(0) + f(3)ω−3 + f(1)ω−1 + f(4)ω−4 + f(2)ω−2 + f(5)ω−5,

y(2) = x(0) + x(1)ω−2 + x(2)ω−4

= f(0) + f(3) + f(1)ω−2 + f(4)ω−2 + f(2)ω−4 + f(5)ω−4,

y(3) = x(3) + x(4)ω−3 + x(5)ω−6

= f(0) + f(3)ω−3 + f(1)ω−3 + f(4) + f(2) + f(5)ω−3,

y(4) = x(0) + x(1)ω−4 + x(2)ω−8

= f(0) + f(3) + f(1)ω−4 + f(4)ω−4 + f(2)ω−2 + f(5)ω−2,

y(5) = x(3) + x(4)ω−5 + x(5)ω−10

= f(0) + f(3)ω−3 + f(1)ω−5 + f(4)ω−2 + f(2)ω−4 + f(5)ω−1.
(11.2.11)

(c) Translate to cosets. H2 = C6, so nothing happens.

(d) Set x = y.

3. Rescale. Divide every entry of x by N = 6.

And lo and behold, our final answer is

x =
1

6



f(0) + f(1) + f(2) + f(3) + f(4) + f(5)
f(0) + f(1)ω−1 + f(2)ω−2 + f(3)ω−3 + f(4)ω−4 + f(5)ω−5

f(0) + f(1)ω−2 + f(2)ω−4 + f(3) + f(4)ω−2 + f(5)ω−4

f(0) + f(1)ω−3 + f(2) + f(3)ω−3 + f(4) + f(5)ω−3

f(0) + f(1)ω−4 + f(2)ω−2 + f(3) + f(4)ω−4 + f(5)ω−2

f(0) + f(1)ω−5 + f(2)ω−4 + f(3)ω−3 + f(4)ω−2 + f(5)ω−1

 =

 f̂(0)
...

f̂(N − 1)

 .

(11.2.12)
In other words, it works!

11.2. THE FAST FOURIER TRANSFORM 237

Now, as the first epigraph to the chapter says, to make any progress in life, one should
go as far as any reasonable person would go and then keep going. With that in mind, we
have the following example.

Example 11.2.7. For N = 16, consider the FFT based on the subgroup chain C1 ≤ C2 ≤
C4 ≤ C8 ≤ C16 (so n = 4); in other words, H0 = C1, H1 = C2, H2 = C4, H3 = C8, and
H4 = C16. Let’s step through the algorithm as in Example 11.2.7, though we will omit
many details, for the sake of both typography and the limits of your patience.

1. Initialize. Set x =

 f(0)
...

f(N − 1)

.
2. Main loop. This goes from i = 1 to 4.

� i = 1.

(a) Notation. Since H0 =
〈
ω16
〉
and H1 =

〈
ω8
〉
, we have m = 16, k = 8,

N/k = 2, d = 2, with coset representatives 1, ω8.

(b) Fill entries of y corresponding to H1. We have

y(0) = x(0) + x(8)ω−0 = f(0) + f(8),

y(8) = x(0) + x(8)ω−8 = f(0) + f(8)ω−8.
(11.2.13)

(c) Translate and loop. We then set, for example

y(1) = x(1) + x(9)ω−0 = f(1) + f(9),

y(2) = x(2) + x(10)ω−0 = f(2) + f(10),

y(9) = x(1) + x(9)ω−8 = f(1) + f(9)ω−8,

y(10) = x(2) + x(10)ω−8 = f(2) + f(10)ω−8,

(11.2.14)

and so on. Then set x = y, as usual.

� i = 2.

(a) Notation. H1 =
〈
ω8
〉
, H2 =

〈
ω4
〉
, m = 8, k = 4, N/k = 4, d = 2,

representatives 1, ω4.

(b) Fill entries of y corresponding to H2.

y(0) = x(0) + x(4)ω−0 = f(0) + f(8) + f(4) + f(12),

y(4) = x(8) + x(12)ω−4 = f(0) + f(8)ω−8 + f(4)ω−4 + f(12)ω−12,

y(8) = x(0) + x(4)ω−8 = f(0) + f(8) + f(4)ω−8 + f(12)ω−8,

y(12) = x(8) + x(12)ω−12 = f(0) + f(8)ω−8 + f(4)ω−12 + f(12)ω−4.
(11.2.15)

(c) Translate and loop. Translate y(0) to y(1), y(2), and y(3) (details omitted)
and similarly for all other empty entries; and set x = y.

238 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

� i = 3.

(a) Notation. H2 =
〈
ω4
〉
, H3 =

〈
ω2
〉
, m = 4, k = 2, N/k = 8, d = 2,

representatives 1, ω2.

(b) Fill entries of y corresponding to H3. See Figure 11.2.1.

(c) Translate and loop. The one coset translation is precisely Figure 11.2.1 with
every index in x(n) or y(n) (but not f(n)) increased by 1, so we omit the
details. We then set x = y and loop.

� i = 4.

(a) Notation. H3 =
〈
ω2
〉
, H4 =

〈
ω1
〉
, m = 2, k = 1, N/k = 16, d = 2,

representatives 1, ω.

(b) Fill entries of y corresponding to H4. This now means that we fill every
row, and in fact, each row is filled with the corresponding correct value of the
DFT, up to rescaling. We omit the details here, due to space and typography,
but you should check this yourself by trying a few entries, starting from the
i = 3 state (i.e., Figure 11.2.1 and its translate to the odd-numbered entries).

3. Rescale. Divide every entry of x by N = 16.

Well, with that example, I hope it at least seems plausible that the FFT really does
compute the DFT. However, once you’ve worked through a number of examples, there are
a lot of questions that might occur to you.

Motivating Problem 11.2.8. Some questions to ponder about the FFT, as presented:

� What’s the idea behind the arbitrary-looking formulas in Algorithm 11.2.4?

� Why is Algorithm 11.2.4 faster than the ordinary “matrix multiplication” version of
the DFT (Remark 9.4.2)?

� What can you do faster with the FFT?

� What was the point of all of that stuff about cosets and transversals?

� How can we prove that the FFT always produces the right answer?

While answers to most of the above questions will have to wait until we develop some
more ideas, we do have the following partial answer to the first question of Motivating
Problem 11.2.8.

Remark 11.2.9. In the notation of Algorithm 11.2.4, consider step i of the main loop,
with Hi−1 = ⟨ωm⟩, Hi =

〈
ωk
〉
, d = m/k, and

Ti−1,i =
{
1, ωk, ω2k, . . . , ω(d−1)k

}
(11.2.16)

as the standard transversal for Hi−1 in Hi.
One (partial) interpretation of the formula (11.2.5) is:

11.2. THE FAST FOURIER TRANSFORM 239

y(0) = x(0) + x(2)ω−0

= f(0) + f(4) + f(8) + f(12)

+ f(2) + f(6) + f(10) + f(14)

y(2) = x(4) + x(6)ω−2

= f(0) + f(4)ω−4 + f(8)ω−8 + f(12)ω−12

+ f(2)ω−2 + f(6)ω−6 + f(10)ω−10 + f(14)ω−14,

y(4) = x(8) + x(10)ω−4

= f(0) + f(4)ω−8 + f(8) + f(12)ω−8

+ f(2)ω−4 + f(6)ω−12 + f(10)ω−4 + f(14)ω−12,

y(6) = x(12) + x(14)ω−6

= f(0) + f(4)ω−12 + f(8)ω−8 + f(12)ω−4

+ f(2)ω−6 + f(6)ω−2 + f(10)ω−14 + f(14)ω−10,

y(8) = x(0) + x(2)ω−8

= f(0) + f(4) + f(8) + f(12)

+ f(2)ω−8 + f(6)ω−8 + f(10)ω−8 + f(14)ω−8,

y(10) = x(4) + x(6)ω−10

= f(0) + f(4)ω−4 + f(8)ω−8 + f(12)ω−12

+ f(2)ω−10 + f(6)ω−14 + f(10)ω−2 + f(14)ω−6,

y(12) = x(8) + x(10)ω−12

= f(0) + f(4)ω−8 + f(8) + f(12)ω−8

+ f(2)ω−12 + f(6)ω−4 + f(10)ω−12 + f(14)ω−4,

y(14) = x(12) + x(14)ω−14

= f(0) + f(4)ω−12 + f(8)ω−8 + f(12)ω−4

+ f(2)ω−14 + f(6)ω−10 + f(10)ω−6 + f(14)ω−2.

Figure 11.2.1: FFT, N = 16, i = 3, subgroup fill

240 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

To get the jth output for the “new subgroup” Hi, you take a linear combination of
the jth input from the “old subgroup” Hi−1, with inputs“offset” by the elements
of the transversal and coefficients taken to be the (−j)th powers of the elements of
the transversal.

(Note that, again, for the inverse transform, we use jth powers instead of (−j)th powers.)
More precisely, suppose we want to compute y(jk), the output corresponding to the jth

element ωjk of Hi (starting with j = 0).

� Start with x(jm), the output corresponding to the jth element ωjm of Hi−1, where j
is counted mod the order of Hi−1 (i.e., with wraparound).

� Take the inputs corresponding to ωjm times each element of the transversal Ti−1,i (the
“offsets”), i.e.,

x(jm), x(jm+ k), . . . , x(jm+ (d− 1)k). (11.2.17)

� Set y(jk) to be a linear combination of those inputs, taking the coefficient for the
term corresponding to the transversal element ωrk to be (ωrk)−j = ω−rkj :

x(jm) + x(jm+ k)ω−kj + · · ·+ x(jm+ (d− 1)k)ω−(d−1)kj . (11.2.18)

To see Remark 11.2.9 in action, we recall that step 2 of Example 11.2.6 is computed by

y(0) = x(0) + x(1)ω−0 + x(2)ω−0

y(1) = x(3) + x(4)ω−1 + x(5)ω−2

y(2) = x(0) + x(1)ω−2 + x(2)ω−4

y(3) = x(3) + x(4)ω−3 + x(5)ω−6

y(4) = x(0) + x(1)ω−4 + x(2)ω−8

y(5) = x(3) + x(4)ω−5 + x(5)ω−10.

(11.2.19)

As promised, we get the outputs y(1), . . . , y(5) by repeating the inputs x(0), x(3) corre-
sponding to Hi−1 =

{
ω0, ω3

}
and then making adjustments to each step corresponding to

the transversal
{
ω0, ω1, ω2

}
. Similarly, in Step 3 of Example 11.2.7, we have

y(0) = x(0) + x(2)ω−0, y(8) = x(0) + x(2)ω−8,

y(2) = x(4) + x(6)ω−2, y(10) = x(4) + x(6)ω−10,

y(4) = x(8) + x(10)ω−4, y(12) = x(8) + x(10)ω−12,

y(6) = x(12) + x(14)ω−6, y(14) = x(12) + x(14)ω−14.

(11.2.20)

Again, we get the outputs y(2), y(4), . . . , y(14) by repeating the inputs x(0), x(4), x(8), x(12)
corresponding to Hi−1 =

{
ω0, ω4, ω8, ω12

}
and then adjusting each step as determined by

the transversal
{
ω0, ω2

}
. Anyway, while the above may still not be completely transparent

or natural, I hope it’s least a little more memorable than (11.2.5)!

11.2. THE FAST FOURIER TRANSFORM 241

Problems

11.2.1. For N = 8, consider the FFT based on the subgroup chain C1 ≤ C2 ≤ C4 ≤ C8 (so
n = 3). Let ω = e2πi/8.

(a) In terms of ω, find generators for each Hi and transversals for each inclusion Hi−1 in
Hi.

(b) Compute the FFT from start to finish, and verify that the end result is the same as
the result of the DFT for N = 8.

11.2.2. For N = 12, consider the FFT based on the subgroup chain C1 ≤ C3 ≤ C6 ≤ C12

(so n = 3). Let ω = e2πi/12.

(a) In terms of ω, find generators for each Hi and transversals for each inclusion Hi−1 in
Hi.

(b) Compute the FFT from start to finish, and verify that the end result is the same as
the result of the DFT for N = 12.

11.2.3. For N = 27, consider the FFT based on the subgroup chain C1 ≤ C3 ≤ C9 ≤ C27

(so n = 3). Let ω = e2πi/27.

(a) In terms of ω, find generators for each Hi and transversals for each inclusion Hi−1 in
Hi.

(b) Compute Steps 1 and 2 of the FFT completely. You may indicate the results of the
“translate” part of each step by “and so on” after demonstrating the pattern.

(c) Compute entries y(1), y(2), y(3) of Step 3.

11.2.4. For N = 24, consider the FFT based on the subgroup chain C1 ≤ C2 ≤ C4 ≤
C12 ≤ C24 (so n = 4). Let ω = e2πi/24.

(a) In terms of ω, find generators for each Hi and transversals for each inclusion Hi−1 in
Hi.

(b) Compute Steps 1 and 2 of the FFT completely. You may indicate the results of the
“translate” part of each step by “and so on” after demonstrating the pattern.

(c) Compute entries y(2), y(4), y(6), y(8) of Step 3.

11.2.5. For N = 36, consider the FFT based on the subgroup chain C1 ≤ C3 ≤ C6 ≤
C18 ≤ C36 (so n = 4). Let ω = e2πi/36.

(a) In terms of ω, find generators for each Hi and transversals for each inclusion Hi−1 in
Hi.

(b) Compute Steps 1 and 2 of the FFT completely. You may indicate the results of the
“translate” part of each step by “and so on” after demonstrating the pattern.

(c) Compute entries y(2), y(4), y(6), y(8) of Step 3.

242 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

11.3 Circuit diagrams and the time complexity of the FFT

In this section, we answer the question:

� Why is Algorithm 11.2.4 faster than the ordinary “matrix multiplication” version of
the DFT (Remark 9.4.2)?

We also begin to answer:

� What was the point of all of that stuff about cosets and transversals?

In addition, while Remark 11.2.9 gives some motivation for the formulas in Algorithm 11.2.4,
this section provides a way to visualize those formulas that you may find to be helpful.

The idea we’ll use to answer the above questions is the idea of a circuit diagram of an
FFT. The goal of a circuit diagram for an FFT is, at each stage, to show which “inputs”
(values of x(t)) are used to compute each “output” (value of y(t)). However, since circuit
diagrams are, in some sense, more expository than mathematical, we’ll start with examples
before attempting a general definition.

Example 11.3.1. Let’s return to Example 11.2.6, with N = 6, ω = ω6 = e2πi/6, and the
FFT based on the subgroup chain C1 ≤ C2 ≤ C6. In subgroup terms, we have

H0 = C1 = {1} , H1 = C2 =
〈
ω3
〉
, H2 = C6 = ⟨ω⟩ . (11.3.1)

Note that T0,1 =
{
1, ω3

}
is a transversal for H0 in H1 and T1,2 =

{
1, ω, ω2

}
is a transversal

for H1 in H2.

The first step (i = 1) of Example 11.2.6 yields the following end result:

y(0) = x(0) + x(3)ω−0,

y(1) = x(1) + x(4)ω−0,

y(2) = x(2) + x(5)ω−0,

y(3) = x(0) + x(3)ω−3,

y(4) = x(1) + x(4)ω−3,

y(5) = x(2) + x(5)ω−3.

(11.3.2)

Thinking in terms of inputs and outputs and not worrying about the ω−k factors, we
see that the outputs y(0) and y(3) are obtained by mixing the inputs x(0) and x(3), which
we represent by the black graph on the left-hand side of Figure 11.3.1. Adding the red and
blue translates of that diagram, we get the left-hand side of Figure 11.3.1. Note that we
have also highlighted the boxes corresponding to elements of H0, H1, and H2, to make it
easier to identify what corresponds to those subgroups.

11.3. CIRCUIT DIAGRAMS AND THE TIME COMPLEXITY OF THE FFT 243

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

Figure 11.3.1: Circuit diagram for C1 ≤ C2 ≤ C6

Turning to the i = 2 step, we have:

y(0) = x(0) + x(1)ω−0 + x(2)ω−0,

y(1) = x(3) + x(4)ω−1 + x(5)ω−2,

y(2) = x(0) + x(1)ω−2 + x(2)ω−4,

y(3) = x(3) + x(4)ω−3 + x(5)ω−6,

y(4) = x(0) + x(1)ω−4 + x(2)ω−8,

y(5) = x(3) + x(4)ω−5 + x(5)ω−10.

(11.3.3)

As described in Remark 11.2.9, since H1 =
{
ω0, ω3

}
and T1,2 =

{
ω0, ω1, ω2

}
, the inputs

going into any given output are either x(0), x(1), x(2), coming from ω0 ∈ H1 as adjusted
by T1,2, or x(3), x(4), x(5), coming from ω3 ∈ H1 as adjusted by T1,2. The former case is
represented by the black graph on the right-hand side of Figure 11.3.1, and the latter case
by the red graph on the right-hand side of Figure 11.3.1.

Example 11.3.2. Next, let’s return to Example 11.2.7, with N = 16, ω = ω6 = e2πi/16,
and the FFT based on the subgroup chain C1 ≤ C2 ≤ C4 ≤ C8 ≤ C16. In subgroup terms,
we have

H0 = C1 = {1} , H1 = C2 =
〈
ω8
〉
, H2 = C4 =

〈
ω4
〉
,

H3 = C8 =
〈
ω2
〉
, H4 = C16 = ⟨ω⟩ ,

(11.3.4)

and we have the transversals

T0,1 =
{
1, ω8

}
, T1,2 =

{
1, ω4

}
,

T2,3 =
{
1, ω2

}
, T3,4 = {1, ω} ,

(11.3.5)

where Ti−1,i is a transversal for Hi−1 in Hi.
To save some space, and because the circuit diagram of step i is just the union of

translates of the diagrams corresponding to elements of Hi, in each step of this FFT we will
only draw the relevant subgroup subdiagram, that is, the portion of the circuit diagram for
step i whose outputs correspond to Hi. For i = 1, we have

y(0) = x(0) + x(8)ω−0, y(8) = x(0) + x(8)ω−8 (11.3.6)

244 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

and translates; we therefore have the subgroup subdiagram shown on the left-hand side of
Figure 11.3.2. Similarly, for i = 2 we have

y(0) = x(0) + x(4)ω−0, y(8) = x(0) + x(4)ω−8,

y(4) = x(8) + x(12)ω−4, y(12) = x(8) + x(12)ω−12
(11.3.7)

giving the subgroup subdiagram shown on the right-hand side of Figure 11.3.2. Note that,
as described in Remark 11.2.9, (11.3.7) and the subgroup subdiagram both show how the
output corresponding to the jth element of H2 is connected back to the inputs starting with
the input correspding to the jth element of H1. That is, the y(0) sum starts with x(0), the
y(4) sum starts with x(8), and so on.

0

8

0

8

0

4

8

12

0

4

8

12

Figure 11.3.2: Partial circuit diagrams, C1 ≤ C2 ≤ C4 ≤ C8 ≤ C16, i = 1, 2

For i = 3, we have

y(0) = x(0) + x(2)ω−0, y(8) = x(0) + x(2)ω−8,

y(2) = x(4) + x(6)ω−2, y(10) = x(4) + x(6)ω−10,

y(4) = x(8) + x(10)ω−4, y(12) = x(8) + x(10)ω−12,

y(6) = x(12) + x(14)ω−6, y(14) = x(12) + x(14)ω−14

(11.3.8)

and its one translate, giving the subgroup subdiagram shown on the left-hand side of Fig-
ure 11.3.3. Finally, for i = 4, we have

y(0) = x(0) + x(1)ω−0, y(8) = x(0) + x(1)ω−8,

y(1) = x(2) + x(3)ω−1, y(9) = x(2) + x(3)ω−9,

y(2) = x(4) + x(5)ω−2, y(10) = x(4) + x(5)ω−10,

y(3) = x(6) + x(7)ω−3, y(11) = x(6) + x(7)ω−11,

y(4) = x(8) + x(9)ω−4, y(12) = x(8) + x(9)ω−12,

y(5) = x(10) + x(11)ω−5, y(13) = x(10) + x(11)ω−13,

y(6) = x(12) + x(13)ω−6, y(14) = x(12) + x(13)ω−14,

y(7) = x(14) + x(15)ω−7, y(15) = x(14) + x(15)ω−15

(11.3.9)

11.3. CIRCUIT DIAGRAMS AND THE TIME COMPLEXITY OF THE FFT 245

with no translates (since H4 = G), giving the subgroup subdiagram shown on the right-
hand side of Figure 11.3.3. We again see the input-out pattern described in Remark 11.2.9,
in that the output corresponding to the jth element of Hi is a linear combination of inputs
corresonding to the jth element of Hi−1 times the transversal T3,4 = {1, ω}.

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 11.3.3: Partial circuit diagrams, C1 ≤ C2 ≤ C4 ≤ C8 ≤ C16, i = 3, 4

For completeness, we present the full circuit diagram of this FFT in Figure 11.3.4. Note
that as we did in Figure 11.3.1, we highlight the boxes that correspond to the elements of
H0, H1, H2, H3, and H4. Anyway, there’s a lot going on in that picture, but the important
part is that it gives some idea of the overall pattern of how this FFT works.

Armed with experience from actual examples, we can now give a more precise (though
still somewhat heuristic) definiton of the thing we’ve been drawing.

Definition 11.3.3. The subgroup subdiagram for step i of a particular FFT is the diagram
that connects all outputs corresponding to the subgroup Hi back to the inputs from which
they are constructed, in the style of Figures 11.3.1–11.3.3. The circuit diagram for step i of
an FFT is the union of all translates of the subgroup subdiagram for step i, and the circuit
diagram for an FFT is the union of the circuit diagrams for all steps of that FFT. (For
examples of full circuit diagrams, see Figures 11.3.1 and 11.3.4.)

246 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

1
5

01234567891
0

1
1

1
2

1
3

1
4

1
5

01234567891
0

1
1

1
2

1
3

1
4

1
5

01234567891
0

1
1

1
2

1
3

1
4

1
5

01234567891
0

1
1

1
2

1
3

1
4

1
5

01234567891
0

1
1

1
2

1
3

1
4

Figure 11.3.4: Circuit diagram for C1 ≤ C2 ≤ C4 ≤ C8 ≤ C16

11.3. CIRCUIT DIAGRAMS AND THE TIME COMPLEXITY OF THE FFT 247

By Definition 11.3.3, to describe how to draw the circuit diagram for step i of an FFT,
it’s enough to describe how to draw the subgroup subdiagram for that step. Considering
Remark 11.2.9 and looking carefully at Examples 11.3.1 and 11.3.2, we get the following
recipe.

Algorithm 11.3.4. Following the conventions of the main loop of Algorithm 11.2.4, let
Hi−1 = ⟨ωm⟩ and Hi =

〈
ωk
〉
, where |Hi−1| = N/m and |Hi| = N/k. Let d = m/k, and use

the standard transversal Ti−1,i =
{
1, ωk, ω2k, . . . , ω(d−1)k

}
for Hi−1 in Hi. The subgroup

subdiagram for step i is given by two rules:

1. The output y(jk), which corresponds to the jth element of Hi, is connected back to
the inputs x(jm), x(jm+ k), x(jm+ (d− 1)k), which correspond to the jth element
of Hi−1 times the elements of the transversal Ti−1,i.

2. The outputs y(j1k) and y(j2k) are connected back to the same inputs exactly when
j1m = j2m (mod N).

Remark 11.3.5. If you look at the full circuit diagrams in Figures 11.3.1 and 11.3.4, one
interesting feature is that there is exactly one path connecting each initial input to each
final output. (Try a few input-output pairs and see for yourself!) While not a proof, that
fact is at least consistent with each final output being a linear combination of the initial
inputs with each input appearing exactly once, as we also see in the DFT. Of course, that
doesn’t show that those linear combinations have the cofficients we need to reconstruct the
DFT, but it’s at least a promising sign.

Perhaps the most notable feature of circuit diagrams is that they provide a way to
visualize the time complexity of the FFT. To begin with, we need to keep in mind that even
though the FFT correctly computes the DFT in terms of the original signal f(t), at any given
step of an actual practical computation, it only performs operations in terms of inputs x(t)
and outputs y(t). So, for example, even though we went to some trouble in Example 11.2.6 to
track what each step produces as an end result in terms of the original f(t), as a plausibility
test (though not yet a proof), the only computations actually performed by in the algorithm
are the x(t) to y(t) computations we saw in Example 11.3.2.

We next establish our basic units of time. In particular, at first you might worry
about the amount of time taken to compute the powers ωℓ that show up everywhere in
the algorithm. However, since ωN = 1, we can initially create a lookup table of all values
ωℓ for 0 ≤ ℓ < N in O(N) time, after which calculating ωrk (for example) boils down to
calculating rk (mod N). We may therefore take our basic arithmetic operations to be:

� Calculating one ωrk, by calculating ℓ = rk (mod N) and looking up the value of ωℓ.

� Performing one complex addition.

� Performing one complex multiplication.

248 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

In fact, since each of these three operations takes a globally bounded amount of time, we
can think of each of them as taking time 1.

Going back to the time complexity for the FFT, in the notation of Algorithm 11.3.4,
since each output in step i connects back to d inputs in the circuit diagram for step i, the
circuit diagram shows that each output is a linear combination of d inputs, a fact you can
also verify directly either from (11.2.5) in the main loop or from Remark 11.2.9. Therefore,
it takes 4d− 1 arithmetic operations to compute each output:

� d exponentiations ωrk;

� d complex multiplications; and

� d− 1 additions.

It follows that in total, we need to perform 3d − 1 operations for each of the N outputs
y(0), . . . , y(N −1), so each step of the main loop requires O(dN) operations. Finally, in the
notation of Algorithm 11.2.4, there are n steps in the main loop, so the total time required
for the FFT is O(dNn).

To get the exponential speedup we want out of the FFT, we need to set an upper bound
D, independent of N , to the factors d = {Hi} / {Hi−1} that occur at each step of the main
loop. In other words, we need to restrict the N we use in the FFT to a particular class of
positive integers, such as powers of 2 (D = 2), integers of the form 2a3b5c (D = 5), and so
on. If we make that assumption, then we can absorb the d in each step as a constant factor,
and the time estimate for the FFT becomes O(Nn).

Finally, since the size of the subgroup |Hi| grows by a factor of at least 2 each time,
starting with |H0| = 1 and increasing to |HN | = N , we see that N ≥ 2n. It follows that
n ≤ log2(N), which means that our time estimate becomes O(N log2N).

In other words:

Theorem 11.3.6 (Time complexity of the FFT). Suppose we set a global upper bound D
on the ratio d = |Hi| / |Hi−1| in a subgroup chain ending in CN , where D is independent of
N . Then the FFT on Z/(N) requires no more than O(N log2N) arithmetic operations.

As promised, we have achieved an exponential speedup from O(N2).

Example 11.3.7. For one example of counting operations directly from the circuit diagram
of an FFT, consider the circuit diagram for the FFT on Z/(6) based on the subgroup chain
C1 ≤ C2 ≤ C6, as shown in Figure 11.3.1. In step 1 of this FFT, each output is obtained
by combining 2 inputs, or in other words, using an equation of the form

y(∗) = x(∗)ω∗ + x(∗)ω∗, (11.3.10)

where the ∗ represents some unspecified element of Z/(6). Therefore, each output requires
computing 2 exponentiations, 2 multiplications, and 1 addition, for a total of 12 exponen-
tiations, 12 multiplications, and 6 additions. Similarly, in step 2, each output comes from
combining 3 inputs in the form

y(∗) = x(∗)ω∗ + x(∗)ω∗ + x(∗)ω∗, (11.3.11)

11.3. CIRCUIT DIAGRAMS AND THE TIME COMPLEXITY OF THE FFT 249

so each output requires computing 3 exponentiations, 3 multiplications, and 2 additions,
for a total of 18 exponentiations, 18 multiplications, and 12 additions.

Example 11.3.8. To give a larger example, consider the circuit diagram for the FFT on
Z/(16) based on the subgroup chain C1 ≤ C2 ≤ C4 ≤ C8 ≤ C16, as shown in Figure 11.3.4.
We see that in every step, each output is obtained by combining 2 inputs in the form

y(∗) = x(∗)ω∗ + x(∗)ω∗, (11.3.12)

so each output requires computing 2 exponentiations, 2 multiplications, and 1 addition, for
a total of 32 exponentiations, 32 multiplications, and 16 additions in each of the 4 steps.

More generally, if we use the analogous subgroup chain for an arbitrary N = 2n, by
exactly the same reasoning, each of the n = log2(N) steps requires 2N exponentiations, 2N
multiplications, and N additions. We therefore have a total of 2N log2(N) exponentiations,
2N log2(N) multiplications, and N log2(N) additions, as promised in Theorem 11.3.6.

Problems

11.3.1. For N = 8, consider the FFT based on the subgroup chain C1 ≤ C2 ≤ C4 ≤ C8 (so
n = 3).

(a) Draw the subgroup subdiagram for step 1 of this FFT. How many exponentiations
ωrk does step 1 require? How many complex multiplications? How many complex
additions?

(b) Same, but for step 2.

(c) Same, but for step 3.

11.3.2. For N = 12, consider the FFT based on the subgroup chain C1 ≤ C3 ≤ C6 ≤ C12

(so n = 3).

(a) Draw the subgroup subdiagram for step 1 of this FFT. How many exponentiations
ωrk does step 1 require? How many complex multiplications? How many complex
additions?

(b) Same, but for step 2.

(c) Same, but for step 3.

11.3.3. For N = 27, consider the FFT based on the subgroup chain C1 ≤ C3 ≤ C9 ≤ C27

(so n = 3).

(a) Draw the subgroup subdiagram for step 1 of this FFT. How many exponentiations
ωrk does step 1 require? How many complex multiplications? How many complex
additions?

(b) Same, but for step 2.

(c) Same, but for step 3.

250 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

11.3.4. For N = 30, consider the FFT based on the subgroup chain C1 ≤ C3 ≤ C6 ≤ C30

(so n = 3).

(a) Draw the subgroup subdiagram for step 1 of this FFT. How many exponentiations
ωrk does step 1 require? How many complex multiplications? How many complex
additions?

(b) Same, but for step 2.

(c) Same, but for step 3.

11.3.5. For N = 30, consider the FFT based on the subgroup chain C1 ≤ C2 ≤ C10 ≤ C30

(so n = 3).

(a) Draw the subgroup subdiagram for step 1 of this FFT. How many exponentiations
ωrk does step 1 require? How many complex multiplications? How many complex
additions?

(b) Same, but for step 2.

(c) Same, but for step 3.

11.3.6. For N = 30, consider the FFT based on the subgroup chain C1 ≤ C5 ≤ C15 ≤ C30

(so n = 3).

(a) Draw the subgroup subdiagram for step 1 of this FFT. How many exponentiations
ωrk does step 1 require? How many complex multiplications? How many complex
additions?

(b) Same, but for step 2.

(c) Same, but for step 3.

11.4 A “proof of concept” FFT multiplication algorithm

�

� What can you do faster with the FFT?

crude convolution-based multiplication for polynomials

11.5 The Schönhage-Strassen multiplication algorithm

�

� What can you do faster with the FFT?

Schönhage and Strassen.

11.6. THE DFT IN THE LANGUAGE OF GROUP THEORY 251

11.6 The DFT in the language of group theory

To understand why the FFT works, we’ll first need to translate our basic definitions about
signals, the DFT, and the FFT from writing signals in terms of Z/(N) = {0, . . . , N − 1} to
writing signals in terms of G = ⟨ω⟩ =

{
1, ω, . . . , ωN−1

}
.

Definition 11.6.1. Fix N ∈ N, and let ω = ωN = e2πi/N and G = ⟨ω⟩ =
{
1, ω, . . . , ωN−1

}
.

We define a signal on G to be a function F : G → C, or in other words, a complex-valued
function with domain G. Note that any signal f : Z/(N) → C can be rewritten equivalently
as a signal F (g) on G by the formula

F (ωn) = f(n). (11.6.1)

(Remember that because the order of ω is N , by Theorem 10.2.2, the expression ωn in
(11.6.1) is unambiguous even though n is only defined mod N .)

One of the first things revealed by changing from signals on Z/(N) to signals on G = ⟨ω⟩
is that the DFT of a signal on G is best considered not as a signal on G but as a signal on
Z/(N).

Definition 11.6.2. Let N , ω, and G be as in Definition 11.6.1, and let F be a signal on G.
We define the Discrete Fourier Transform, or DFT, of F to be the function F̂ : Z/(N) → C
given by

F̂ (k) =
∑
g∈G

F (g)g−k. (11.6.2)

Ask Yourself 11.6.3. Why is the DFT described in Definition 11.6.2 consistent with the
DFT described in Definition 9.4.1? In other words, if F is the signal on G corresponding
to the signal f on Z/(N), why is F̂ (k) = f̂(k)?

Move up to right after FFT; maybe combine with next section?
Point of

y(jk) =
d−1∑
r=0

x(jm+ rk)ω−rkj (11.6.3)

is: Let b = ωrk run over all elements of a transversal. Set the jth element of the subgroup
part of the vector to the linear combination of the jth elements of the old vector (mod
N/m) translated by the coset rep b with a coefficient of b−j .

11.7 Proof of the FFT

The FFT is such a remarkable idea that even if you’re somehow still skeptical about the
point of abstraction, you must have wondered: Does the FFT really always work? And if
so, why? In other words, as we asked earlier:

Motivating Problem 11.7.1. How can we prove that the FFT always produces the right
answer?

252 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

As we started to explain in Section 11.3, the answer to Motivating Problem 11.7.1
lies in the theory we have developed about subgroup chains, coset representatives, and
transversals. We start with the following observation.

Theorem 11.7.2. Let K ≤ H ≤ G be a subgroup chain. Suppose {aj | 1 ≤ i ≤ m} is a
transversal for H in G and {bk | 1 ≤ i ≤ r} is a transversal for K in H. Then

{ajbk | 1 ≤ j ≤ m, 1 ≤ k ≤ r} (11.7.1)

is a transversal for K in G.

Proof. If G is the disjoint union

G = a1H ∪ a2H ∪ · · · ∪ amH (11.7.2)

and H is the disjoint union

H = b1K ∪ b2K ∪ · · · ∪ brK (11.7.3)

then subtituting (11.7.3) into (11.7.2), we get the disjoint union

G = (a1b1K ∪ a1b2K ∪ · · · ∪ a1brK)

∪ (a2b1K ∪ a2b2K ∪ · · · ∪ a2brK)

...

∪ (amb1K ∪ amb2K ∪ · · · ∪ ambrK).

(11.7.4)

The theorem follows.

When we combine Theorem 11.7.2 with a subgroup chain, we get the following method
for expressing the elements of a group as a product of transversals.

Definition 11.7.3. As usual, fix N ∈ N and ω = e2πi/N , and let

C1 = H0 ≤ H1 ≤ · · · ≤ Hn−1 ≤ Hn = CN (11.7.5)

be a chain of subgroups of CN that starts at the trivial subgroup C1 = {1} and ends at the
group CN itself. A factorization of the subgroup chain (11.7.5) is a choice of a transversal
Ti for Hi−1 in Hi for each 1 ≤ i ≤ n.

Note that by Theorem 11.7.2, if {aj} is a transversal for Hi+1 in Hi+2 and {bk} is
a transversal for Hi in Hi+1, then {ajbk} is a transversal for Hi in Hi+2; similarly, a
factorization gives a transversal of the form {ajbkcℓ} for each Hi in Hi+3, and so on. We
therefore define the product transversal for Hi in Hi+t associated to a given factorization to
be the transversal obtained as the product of t transversals of that FTS in this manner. Note
that by definition, the key property of product transversals is that if {aj} is the product
transveral for Hi in Hm and {bk} is the product transversal for Hm in Hr, then {ajbk} is
the product transversal for Hi in Hr.

11.7. PROOF OF THE FFT 253

Example 11.7.4. Factorization used in standard FFT. (Exercise)

In brief, the exponential speedup in the FFT can be explained by the fact that a fac-
torization for the subgroup chain (11.7.5) involves a set S of O(n) = O(logN) elements
such that every element of CN can be expressed uniquely as a product of a suitably chosen
subset of S. Moreover, we can use subgroup chain factorizations to give a concise (if not
necessarily easy to understand) proof that the FFT works.

First, we rewrite and generalize the FFT using multiplicative notation and factorized
transversal systems as follows.

Definition 11.7.5. Fix N ∈ N and ω = e2πi/N , let

C1 = H0 ≤ H1 ≤ · · · ≤ Hn−1 ≤ Hn = CN , (11.7.6)

and let {Ti | 1 ≤ i ≤ n} be a factorization of the subgroup chain (11.7.6), where Ti is a
transversal for Hi−1 in Hi. Furthermore, for 0 ≤ m ≤ r, let Si be the associated product
transversal for Hi in Hn = G, where S0 = Hn = G and Sn = {1}. Let mi = |Hi| and
si = |Si|, and note that since si is the number of cosets of Hi in Hn = CN , misi = N .

The generalized FFT given by the factorization {Ti} is defined by defining the functions
φi : Si × (Z/(mi)) → C (0 ≤ i ≤ n) recursively as follows. For i = 0, let φ0(g, 0) = F (g)
for all g ∈ CN (as m0 = 1). Then, given φi−1, for a ∈ Si and k ∈ Z/(mi), we define

φi(a, k) =
∑
b∈Ti

φi−1(ab, k)b
−k. (11.7.7)

The output of the generalized FFT is then the function φn(1, k) (k ∈ CN).

Example 11.7.6. restricts to previous FFT
key point is that φi(1, j) is stored in jth element of Hi, i.e., matrix extry j·(index of

Hi). More generally φi(a, j) is stored in translate of that by coset rep a.

In general, we see that the generalized FFT takes n steps to compute, each of which
involves O(dN) arithmetic operations, for a total complexity of O(dNn) = O(N logN),
assuming d is constant or at least uniformly bounded above (exercise). It therefore remains
to show that the output φn(1, k) is equal to the DFT f̂(k). To prove this fact, we introduce
the following interpolation between the initial signal F (ωn) and the DFT f̂(k).

Definition 11.7.7. Fix notation as in Definition 11.6.1, and let

C1 = H0 ≤ H1 ≤ · · · ≤ Hn−1 ≤ Hn = G. (11.7.8)

Choose a factorization for (11.7.8), let Si be the associated product transversal for Hi in
CN , and let mi = |Hi|. For 0 ≤ i ≤ n, we define the partial DFT F̂i : Si × Z/(mi) → C by
the formula

F̂i(a, k) =
∑
h∈Hi

F (ah)h−k (11.7.9)

for each a ∈ Si and k ∈ Z/(mi).

254 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

When we say that the partial DFT interpolates between F and F̂ , we mean the following.
On the one hand, for i = 0, S0 = CN , H0 = {1}, and m0 = 1, we have

F̂0(g, 0) = F (g), (11.7.10)

our original signal on G. Conversely, for i = n, Sn = {1}, Hn = G, and mn = N , so for
k ∈ Z/(N), we have

F̂n(1, k) =
∑
h∈G

F (h)h−k = f̂(k), (11.7.11)

the DFT of F . It therefore suffices to prove the following theorem.

Theorem 11.7.8. Fix notation as in Definition 11.7.7. Then φi = f̂i for 0 ≤ i ≤ n.

Proof. We proceed by induction. The base case i = 0 follows because φ0 = F = F̂0, so
assume by induction that φi−1 = F̂i−1. As in Definition 11.7.5, for the given factorization
{Ti}, let Si be the associated product transversal for Hi in G. Then for a ∈ Si and
k ∈ Z/(mi), we have

φi(a, k) =
∑
b∈Ti

φi−1(ab, k)b
−k

=
∑
b∈Ti

F̂i−1(ab, k)b
−k (by induction)

=
∑
b∈Ti

 ∑
h∈Hi−1

F ((ab)h)h−k

 b−k (11.7.9)

=
∑
b∈Ti

∑
h∈Hi−1

F (a(bh))(bh)−k.

(11.7.12)

One subtlety: For a ∈ Si and b ∈ Ti, by Theorem 11.7.2, each ab is an element of the
associated product transversal Si−1 for Hi−1 in G, and therefore, F̂i−1(ab, k) is actually
defined, making the use legitimate.

Now, since Ti is a transversal for Hi−1 in Hi, by definition of transversal, if b runs over
all elements of Ti and h runs over all elements of Hi−1, then h′ = bh runs over all elements
of Hi. We therefore see from (11.7.12) that

φi(a, k) =
∑
h′∈Hi

F (ah′)(h′)−k = F̂i(a, k). (11.7.13)

The theorem follows.

I don’t know about you, but I certainly find it remarkable how short the above proof
is — in some ways, it looks like nothing happened! For this book, the proof of the FFT
thereby represents the ultimate triumph of abstraction, in that we understood the FFT by

1. Using a different point of view (subgroups and cosets instead of, say, matrices and
indices) to see the situation more clearly; and

2. Using the right language (transversals and factorizations) in which to express our
proof.

11.8. THE FFT ON AN ARBITRARY GROUP 255

Problems

11.7.1. Fix N = 30, let ω = e2πi/N , and consider the subgroup chain H0 ≤ H1 ≤ H2,
where H0 =

〈
ω15
〉
, H1 =

〈
ω5
〉
, and H2 = ⟨ω⟩ = C30.

(a) Find a transversal {ai} for H1 in H2.

(b) Find a transversal {bj} for H0 in H1.

(c) Write out the cosets {aibjH0} and verify that they partition H2 (i.e., that H2 is the
disjoint union of those cosets).

11.7.2. Fix N = 16, let ω = e2πi/N , and consider the subgroup chain H0 ≤ H1 ≤ H2 ≤
H3 ≤ H4, where H0 = {1}, H1 =

〈
ω8
〉
, H2 =

〈
ω4
〉
, H3 =

〈
ω2
〉
, and H4 = ⟨ω⟩ = C16.

(write out product transversals)

11.7.3. Compare N = 26n, base 2, 4, 8.

11.7.4. Compare N = 26n, base 2, 4, 8.

11.8 The FFT on an arbitrary group

representations of a group
FFT on a group

256 CHAPTER 11. EVEN FASTER: THE FAST FOURIER TRANSFORM

Chapter 12

The big reveal

[SPOILER], I’m not a Republic serial villain. Do you seriously think I’d ex-
plain my masterstroke if there remained the slightest chance of you affecting its
outcome? I did it thirty-five minutes ago.

— [SPOILER], Watchmen, Alan Moore

12.1 Our secret agenda

OK, it’s not so secret an agenda, since we discussed it back in the introduction! But the
fact is, while everything in this book is motivated by applications, we did actually touch on
all of the fundamental objects of a “traditional”, proof-centric course in abstract algebra.
So, let’s pull back the curtain now and look at what we’ve covered purely in terms of theory.

The fundamental objects of abstract algebra are groups (Definition 10.1.1), rings (Def-
inition 4.2.2), and fields (Definition 4.2.10), with linear algebra (Chapter 5) sometimes
appearing as a tool used in the theory of fields. One often-used approach to learning ab-
stract algebra is to introduce those objects in logical order, in the sense of introducing
objects with the fewest axioms first. In that order, we have:

� Groups have one operation and three axioms (associativity, identity, inverse). Abelian
groups add the fourth axiom of commutativity of the operation.

� Taking a more careful approach to the definition of ring than we did in Chapter 4, a
ring R has two operations, + and ·, with (R,+) being an abelian group (four axioms),
· being associative (one axiom), and + and · satisfying the distributive laws (two
axioms). A commutative ring adds the axiom of commutativity of multiplication, and
a ring with identity adds the axiom of a multiplicative identity 1 (as opposed to the
additive identity 0).

� A field is a a commutative ring with identity that also has inverses.

� A vector space V over a field F is a set V with operations of vector addition v +w
and scalar multiplication av (a ∈ F , v,w ∈ V) and a particular element 0, all

257

258 CHAPTER 12. THE BIG REVEAL

satisfying the properties listed in Problem 5.3.1. Note that in this approach, Fn

and its subspaces are all examples of (abstract) vector spaces, and we can define
span, linear independence, and basis just like we did in Chapter 5, except replacing
subspaces of Fn with arbitrary vector spaces.

To go further with abstract algebra, even to be an informed consumer, almost certainly
the next thing you should do is to focus on theorem-proving, both so you can learn the
fundamental theory well and also so you can sharpen your proof skills enough to understand
subsequent material. Good textbooks for that purpose include the following.

� Friendly books on the theory of groups, rings, and fields include Gallian [?] and
Hungerford [?]. The former book is my favorite introduction to the theory of abstract
algebra, and the latter book is particularly in tune with our approach here, in that it
considers rings before groups, just like we did.

� Somewhat more adventurous but still well-written books on the theory of abstract al-
gebra include Dummit and Foote [?] and Artin [?]. The latter book (another favorite
of mine) is well-known both for having particularly advanced topics more commonly
found in graduate algebra textbooks, and also for having really hard (but fun!) prob-
lems.

� For a friendly introduction to axiom-based linear algebra, try Messer [?], and for a
more adventurous but still well-written textbook, see Axler [?].

Also, to take on more sophisticated uses of abstract algebra, you’ll probably at least
want to get acquainted with some other parts of math, such as:

� Probability and statistics;

� Graph theory; and

� Analysis (the theory of calculus).

Point being, many professional-grade applications of algebra also involve at least a bit of
some other aspect(s) of mathematics (see the next section), so it helps to broaden your
background. There are many great sources for the above topics, so I leave it as an exercise
for the reader to find your favorites! *

12.2 What’s next?

To wrap up this book, here are just a few topics in applied and industrial algebra that are
currently (in 2024) at the forefront of research, organized by subfield of algebra, and with
topics chosen to suit my personal tastes (sorry/not sorry).

*Though I can’t resist one completely self-serving recommendation: [?], while designed to be a textbook
used in a second course in analysis, actually works as an introduction to analysis for the ambitious or
impatient, but nevertheless covers topics relevant to industrial applications like Fourier series, the Fourier
transform, and Hilbert spaces.

12.2. WHAT’S NEXT? 259

� Groups: Probably the biggest piece of introductory abstract algebra missing from
this book is a detailed study of nonabelian groups. It turns out that there are several
areas of active research that generalize applications in this book from abelian groups
to nonabelian groups, including:

– Section 10.4 shows how the difficulty of the Discrete Logarithm Problem in cer-
tain finite abelian groups can be used to create secure public-key cryptography
schemes. However, if we look at nonabelian groups, there are algorithmic prob-
lems that are even more difficult to solve; in fact, there are problems that can
be proven to be algorithnmically impossible to solve! This idea has become the
basis for a whole field of recent work on nonabelian groups in cryptography. For
a survey of the field, see Kahrobaei, Flores, and Noce [?].

– Similarly, generalizing the idea that the FFT is an application of the subgroup
structure of cyclic groups (Chapter 11), it turns out that there is a particular
combinatorial problem in group theory that, if solved for an appropriate family
of groups, would provide an algorithm for matrix multiplication that reduces the
time needed to multiply two matrices to (in some sense) roughly the same big-O
amount of time required to read the relevant data! See the work of Cohn, Umans,
and others [?, ?, ?]).

� Rings and ideals: Algebraic geometry is the study of solutions to polynomial equa-
tions, often (but not always) over a field. Two broad recent areas of applied research
in algebraic geometry are:

– Algebraic statistics: It turns out that many useful statistical models can be
described as the solution set of a collection of polynomial identities and inequal-
ities. We can therefore use the tools of algebraic geometry to improve statistical
methods and analysis. See Améndola, Casanellas, and Garcia Puente [?] for an
overview of the field.

– Elliptic curve cryptography: See Section 10.4 and the references cited there for
an overview.

� Finite fields and linear algebra: While we’ve spent a fair amount of time discussign
error-correcting codes, we’ve really only barely scratched the surface of what’s out
there. There are a number of texts that serve as good general introductions to the
whole field; see, for example, MacWilliams and Sloane [?].

One example of a recent� innovation in coding theory is low-density parity check codes,
which provide error-correction close to various theoretical limits. See MacKay [?] for
an introduction.

� All of the above: The most algebraic area of current industrial research may well be
quantum computing, which makes use of everything we’ve discussed and more. Some
particularly mathematical highlights include:

�Sort of: LDPC codes were invented in 1963, but their usefulness was only recognized starting in the
mid-1990s.

260 CHAPTER 12. THE BIG REVEAL

– The quantum Fourier transform, which, given a (still hypothetical) quantum
computer, speeds up the FFT exponentially.� The proverbial killer app for the
QFT is Shor’s algorithm and related algorithms, which can both quickly factor
large numbers of the form pq (p, q prime) and also quickly solve the discrete log
problem mod p (Section 10.4) — meaning that someone with an effective quan-
tum computer can break most of the commonly used public-key cryptosystems
used today.

– To create an effective quantum computer in practice, you have to be able to
account for errors caused by “noise” coming from the environment in which
your computer sits. That’s where quantum error-correcting codes, the quantum
analogue of the error-correcting codes we’ve studied here, come in.

– Of course, once your working quantum computer has broken cryptography as we
know it, you’ll need to look for some way to keep secrets that isn’t susceptible
to Shor’s algorithm. That naturally leads to (what else) quantum cryptography.

Like I said, quantum computing really uses it all! For a thorough and very mathe-
matical introduction and overview to the subject, see Nielsen and Chuang [?].

Of course, like any proper post-credit scene, the above is really setting up a potential
sequel that I may write someday. But for now, I’ll just leave you with some wise words
about mathematical discovery:

Oh, the movie never ends
It goes on and on and on and on

— Journey, “Don’t Stop Believin’“

�That’s right, it takes less time to do a QFT than it does to read in the data! In fact, in some sense, the
hard part of the algorithm is inputting the data and reading the result.

Appendix A

Unique factorization

A.1 The descending chain condition

blah blah ideal nonsense

A.2 Every PID is a UFD

definition of factoring terminating
definition of UFD
lemma: in a PID, irreducibles are prime
thm: PID is UFD
nonexample: not a PID
non UFD (without proof)

Remark A.2.1. This is why there are so few Euclidean domains

261

262 APPENDIX A. UNIQUE FACTORIZATION

Appendix B

Theory of finite fields

B.1 Kernels and the first isomorphism theorem

This chapter builds theory need to prove five facts. Since this isn’t needed for the main
exposition, mostly inquiry based.

definition of kernel of a ring homomorphism.

Kernel is an ideal.

1IT for rings

Problems

B.1.1.

B.2 The exponent of a finite abelian group

Definition of exponent.

Theorem B.2.1. Let G be a finite abelian group of order n and exponent k. We have that:

1. k divides n; and

2. G has an element of order k.

Remark B.2.2. Classification of finite abelian groups; statement as product of cyclic with
each factor dividing the next. Classification implies Theorem B.2.1.

Problems

B.2.1.

263

264 APPENDIX B. THEORY OF FINITE FIELDS

B.3 Field extensions

definition of field extensions
field extension containing one root always exists
splitting field always exists.

Problems

B.3.1.

B.4 Proofs of facts about finite fields

definition primitive element
Cor: multiplicative group of a finite field is cyclic.
Proof: exponent
Cor: any finite field is Fp[x]/(m(x)), m(x) irreducible.
proof: substitution homomorphism, plug in primitive element, 1IT.
restate/quote magic polynomial corollary
Everything now stems from the magic polynomial!
lemma: generalize Frob automorphism.
Existence: splitting field of magic polynomial, subfield of xq = x. Subfield (preserves

addition) because Frob automorphism.
Uniqueness: If E also has order q, irreducible m(x) for E divides magic polynomial, so

Fq has some root of m(x), generates same field by 1IT.

Problems

B.4.1. field of order 8 isom

B.4.2. finite fields of order 16 are isomorphic.

B.4.3.

B.5 Factoring the magic polynomial

Bonus: factorization of magic polynomial: each irreducible shows up exactly once.
Example: x16 − x over F2.
Lem: Let q = pe, r = pd. Then d divides e if and only if xr − x divides xq − x. Proof:

Work mod xp
d − x. If e = nd, then xp

e
is x raised to the pd n times. Mod xp

d − x, you get
xp

e
= x. If e = nd+ r, same idea gets a remainder xp

r − x, no go.
every irreducible of degree d, where d divides e, divides the magic polynomial xq − x,

where q = pe. Proof: Fp[x]/(f(x)) generates field of order pd, so f(x) divides xp
d − x.

Every irreducible factor of xq − x, q = pe has degree d, where d divides e. Proof:
generates subfield of order pd.

B.5. FACTORING THE MAGIC POLYNOMIAL 265

Corollary: subfields are Fpd , where d divides e.
Irreducibles don’t repeat: No repeats when you factor into linear factors over Fq, so no

repeats when you factor mod p. If there were a repeat mod p, there would be repeated
roots over Fq, and there wouldn’t be enough factors of the magic polynomial.

Problems: degree 6.

Problems

B.5.1. (a) x4 − x

(b) x8 − x

(c) number of irreducibles of degree 6? x64 − x

B.5.2. ℓ a prime. How many irreducible polynomials in Fp[x] of degree ℓ?

266 APPENDIX B. THEORY OF FINITE FIELDS

Bibliography

267

Index

F -linear combination, 84
F [x]-linear combination, 64
[n, k, d] binary code, 126
k reduced (mod m), 39
(quadratic) nonresidues (mod p), 42

Abelian, 257
abelian, 217
absolute value, 199
additive coset, 134
additive notation, 228
Algebraic geometry, 259
Algebraic statistics, 259
antilog table of F with respect to α, 164
argument, 201
Artin’s conjecture, 41
associates, 14, 60, 68, 74
augmented matrix of the linear system Ax =

b, 111
automorphism, 151
automorphism of R[x] induced by φ, 148
axioms, 38

basic trigonometric signals, 204
basis, 81, 82, 84, 86
BCH code, 185
BCH code given by E, α, and δ, 185
BCH construction, 170
Berlekamp’s Algorithm, 62
big O notation, 28
bijective, 10
binary linear code C of length n, 118
binary operation, 68
bit, 118
bits, 79, 115
bitstring of length n, 118

bitstrings, 79, 115

bitstrings of length n, 83

bursts, 192

cancellation, 71

canonical homomorphism, 147

characteristic, 153

circuit diagram, 242

circuit diagram for an FFT, 245

circuit diagram for step i of an FFT, 245

closed r-ball around c, 130

closed under addition, 7

closure, 68, 79

closure proof, 7

code, 118

codewords, 116, 118, 193

coefficient ring, 48

coefficients, 84

column, 91

column space of A, 94

column vectors, 92

combinatorial-time, 28

common divisor, 15, 58, 74

commutative, 257

commutative rings, 70

complex exponential, 200

complex numbers, 12

complex plane, 199

complexity, 27

composite, 51

congruent (mod m), 39

Congruent Substitution Principle, 39

conjugate, 200

contained, 8

convolution, 209

268

INDEX 269

coordinates of w, 86
coordinates of w with respect to the basis

{v1, . . . ,vk}, 86
corrects, 119
coset, 134, 222
cyclic, 154, 171, 194, 220
cyclic subgroup generated by α, 154
cyclic subgroup generated by a, 220

de Moivre’s theorem, 201
decoding, 118
degree, 49
designed distance, 185
DFT, 205, 251
dictionary order, 166
dimension, 84, 86, 126, 169
dimensions, 81
direct proof, 6
Discrete Fourier Transform, 204, 205, 251
discrete logarithm problem, 61, 62, 228
dividend, 52
divides, 14, 58, 74
divisor, 14, 52
domain, 71
dominates f(n) asymptotically, 28
dot product, 92

elementary operations, 98
elliptic curve, 228
Elliptic curve cryptography, 259
encoding, 118
equal, 8
error, 116
error-correcting codes, 116
error-correction rate, 193
Euclidean Algorithm, 22
Euclidean algorithm for polynomials, 58
Euclidean domain, 68, 75
Euclidean Rewriting, 26, 64
Euler’s formula, 200
Euler’s identity, 201
exponential-time, 28
Extended Euclidean Algorithm, 26
extension, 178

extension field, 178

factorial, 10
factoring over E, 178
factoring over F , 178
factorization, 252
Fast Fourier Transform, 211, 232
Fast Fourier Transform based on the sub-

group chain H0 ≤ · · · ≤ Hn, 233
FFT, 232
field, 45, 72, 257
field of order p, 45
finite extension, 178
finite field, 142, 153
finite fields, 138, 170
floor, 19
fraction, 45
free column, 101
free variables, 97, 112
Frobenius automorphism, 180
Frobenius orbit of β, 181

Galois field, 62
Galois field of order p, 45
Galois field of order q, 159
Gaussian integers, 75
Gaussian reduction, 95, 99
GCD, 16
generalized FFT given by the factorization

{Ti}, 253
generated by a, 220
generator matrix, 119
generator polynomial, 174
Golay 23-code, 176
greatest common divisor, 16, 58, 74
group, 154, 217
Groups, 257

Hamming n-code, 170
Hamming 7-code, 121
Hamming 8-code, 124
Hamming distance, 127
Hamming path of length k, 127
Hamming weight, 127

270 INDEX

homogeneous, 96
homomorphism, 147

ideal, 131
ideal generated by c and d, 132
ideals, 170
identity, 257
if-then method, 6
if-then statements, 5
induction, 9
inductive definition, 10
infinite order, 155, 220
information rate, 193
injective, 10
inner product, 212
integer linear combination, 25
integers, 11
integers (mod m), 38, 39
integral domain, 71
intersection, 8
inverse, 11
inverse DFT, 206
inverse of a, 45, 71
inverses, 257
irreducible, 61, 74
irreducible over E, 178
irreducible over F , 178
isomorphic, 150
isomorphism, 150

leading 1s, 96
leading coefficient, 49
leading term, 49
left multiplicative coset, 222
length, 126, 169
linear code C of length n over Fq, 193
linear combination, 82, 84
linear dependency, 85
linear equation, 96
linear independence, 84
linearly dependent, 82, 85
linearly independent, 82, 85
log table of F with respect to α, 164
logarithmic-time, 28

low-density parity check codes, 259

majority logic, 117, 120
matrix addition, 91
matrix of the homogeneous linear systemAx =

0, 96
matrix over F , 91
matrix product, 93
matrix-vector product, 92
maximal linearly independent subset of W ,

107
message, 115
metric, 128
minimal polynomial, 145
minimal polynomial of β over F2, 180
minimal recovery set, 80
minimum distance, 126, 169
modulus, 39, 199
modulus-argument, 201
monic, 49
multiplicative group, 154
multiplicative inverse of a, 45

natural numbers, 11
natural primitive Nth root of unity, 202
nearest neighbor, 128
noisy channel, 115
noncommutative ring, 70
nonconstructive, 146
nontrivial, 84
nullity of A, 102
nullspace of A, 94

one-to-one, 10
one-way trapdoor function, 227
onto, 10
order, 45, 153, 155, 220, 221
orthonormal set, 212

parity check, 116
parity check code of length n+ 1, 116, 119
parity check matrix, 119
partial DFT, 253
partition, 223, 224

INDEX 271

perfect, 130
PID, 145
pivot columns, 97
pivot variables, 97, 112
polynomial notation, 172, 194
polynomial with coefficients in R, 47
polynomial-time, 28
polynomials with coefficients in a field, 37
prime, 18, 74
primitive, 154
primitive element, 41
primitive element (mod p), 41
primitive element of Z/(p), 41
principal ideal domain, 145
principal ideal generated by d, 132
private-key cryptography, 226
product transversal, 252
proof, 6
public-key cryptography, 226

quadratic residue, 42
quadratic residue (mod p), 42
quantum computing, 259
quantum cryptography, 260
quantum error-correcting codes, 260
quantum Fourier transform, 260
quotient ring R/I, 135
quotient rings, 134

rank of A, 102
rational numbers, 11
reads, 119
real numbers, 12
recursive, 10
reduced form, 143
reduced representative, 139
reduced representive of f(x) + I, 140
reduced row-echelon form, 97
reducible, 61
Reed-Solomon codes, 194
REF, 96
repetition code, 117
repetition code of length n, 120
representative, 223

representative of the coset s+ I, 135
ring, 14, 68, 69, 257
ring of polynomials with coefficients in R, 47
rings with unity, 70
root of m(x), 140
rounding function, 20
row, 91
row vectors, 92
row-column product, 92
row-echelon form, 96
RREF, 97
RREF of A, 99

scalar multiplication, 83, 91
scalars, 83
set equality, 8
set-builder notation, 4
Shor’s algorithm, 31, 260
signal, 204
signal on G, 251
size function, 74
skew-linear, 212
solution space, 111
span, 84
spanning, 82
spanning set, 84
spans, 82, 84
spectrum, 205
square-free, 61
standard framework, 118
string, 115
subgroup, 218
subgroup subdiagram, 243, 245
subgroups, 218
subset, 8
subspace, 83
substitution homomorphism, 148
surjective, 10
syndrome, 119
system of n linear equations in k variables,

96

transversal, 224
trivial, 84

272 INDEX

union, 8
unit, 45, 71
up to associates, 14, 60

Vandermonde matrix, 189
vector addition, 83
vector space, 80, 257
vectors, 81, 83, 92

well-defined, 136
worst-case time estimate, 27

zero divisors, 71
zero factor property, 50
zero ideal, 132
zero matrix, 92
zero polynomial, 47
zero subspace, 84
zero vector, 83

	Introduction
	1 How to think about mathematics
	1.1 HEY, YOU!
	1.2 Problems vs. exercises
	1.3 Sets, theorems, and proofs
	1.4 Number systems

	2 Faster: The Euclidean Algorithm
	2.1 Divisibility
	2.2 Greatest common divisors
	2.3 Division with remainder
	2.4 The Euclidean Algorithm
	2.5 Bezout's identity and Eucliean Rewriting
	2.6 A crash course in complexity

	3 More: The Polynomial Euclidean Algorithm
	3.1 The integers mod m
	3.2 Modular linear equations and fields
	3.3 Polynomials with coefficients in a ring
	3.4 Polynomial division with remainder
	3.5 The Euclidean algorithm for polynomials
	3.6 Bezout's identity for polynomials

	4 Rings and fields
	4.1 Why abstraction?
	4.2 Rings and fields
	4.3 Factoring and Euclidean domains

	5 Linear algebra
	5.1 A data compression problem
	5.2 Linear algebra in three cartoons
	5.3 The foundations of linear algebra
	5.4 Matrices with entries in a field F
	5.5 Systems of linear equations (homogeneous case)
	5.6 Dimension and rank-nullity
	5.7 Row spaces and subspaces as nullspaces
	5.8 Systems of linear equations (inhomogeneous case)
	5.9 Applied and industrial topology

	6 Cheaper: Error-correcting codes
	6.1 The idea of an error-correcting code
	6.2 Binary linear codes
	6.3 The Hamming 7- and 8-codes
	6.4 Hamming distance and error correction

	7 Ideals, quotients, and finite fields
	7.1 Ideals
	7.2 Quotient rings
	7.3 Computation in F[x]/(m(x))
	7.4 Principal ideal domains
	7.5 Homomorphisms
	7.6 Finite fields
	7.7 Two worked examples: F8 and F16

	8 Stronger: BCH codes
	8.1 How to build a better code
	8.2 Cyclic codes
	8.3 Cyclic codes and generator polynomials
	8.4 Minimal polynomials
	8.5 BCH codes
	8.6 Better codes and the burst error problem
	8.7 Cyclic codes over arbitrary fields
	8.8 Reed-Solomon codes
	8.9 Error correction in BCH codes

	9 The Discrete Fourier Transform
	9.1 Digital signal processing
	9.2 Complex numbers and roots of unity
	9.3 Signals
	9.4 The Discrete Fourier Transform
	9.5 Convolution
	9.6 Inner products and orthogonality

	10 Groups
	10.1 Groups and subgroups
	10.2 Orders of elements
	10.3 Cosets
	10.4 Public-key cryptography and the discrete log problem

	11 Even faster: The Fast Fourier Transform
	11.1 Can we make multiplication faster?
	11.2 The Fast Fourier Transform
	11.3 Circuit diagrams and the time complexity of the FFT
	11.4 A ``proof of concept'' FFT multiplication algorithm
	11.5 The Schönhage-Strassen multiplication algorithm
	11.6 The DFT in the language of group theory
	11.7 Proof of the FFT
	11.8 The FFT on an arbitrary group

	12 The big reveal
	12.1 Our secret agenda
	12.2 What's next?

	A Unique factorization
	A.1 The descending chain condition
	A.2 Every PID is a UFD

	B Theory of finite fields
	B.1 Kernels and the first isomorphism theorem
	B.2 The exponent of a finite abelian group
	B.3 Field extensions
	B.4 Proofs of facts about finite fields
	B.5 Factoring the magic polynomial

	Index

