Name:
Exam 3
This test consists of 8 questions on 6 pages, totalling 100 points. You are not allowed to use books, notes, or calculators. Unless otherwise stated, you may take as given anything that has been proven in class, in the homework, or in the reading.

1. (10 points) Let $I=\left(x^{2}+1\right)$ be the principal ideal of $R=\mathbf{F}_{2}[x]$ generated by $x^{2}+1$. Find some $f(x) \in I$ such that $\operatorname{deg} f(x) \geq 3$, and briefly EXPLAIN how you know that $f(x) \in I$. (If you don't know how to find $f(x)$, you may recite the definition of ideal for partial credit.)

$$
\begin{aligned}
& I \text { is all poly mulls of } x^{2}+1 \\
& \left(\text { seth of }\left(x^{2}+1\right)\right. \text {) } \\
& \text { So } f(x)=x^{2}\left(x^{2}+1\right) \in I \\
& f(x)=x^{4}+x^{2}
\end{aligned}
$$

2. (10 points) Let $\mathbf{F}_{128}=\mathbf{F}_{2}[\alpha]$, where α is a root of $x^{7}+x^{3}+1$. Let $\beta=\alpha^{3}+\alpha^{2}+1$ and $\gamma=\alpha^{4}+\alpha$.
(a) Fill in the blanks: An element of \mathbf{F}_{128} in reduced form is a polynomial in the variable

(b) Find a reduced representative for $\beta \gamma$. Show all your work.

3. (10 points) Let \mathbf{F}_{16} be a field of order 16. Give an example of a ring of order 16 that is not isomorphic to \mathbf{F}_{16}. Briefly JUSTIFY your answer.

4. (12 points) Let \mathbf{F}_{2048} be the field of order 2048 , and let $\mathbf{F}_{2048}^{\times}$be the multiplicative group of \mathbf{F}_{2048}. Note the prime factorizations $2048=2^{11}$ and $2047=23 \cdot 89$.
(a) What are the possible orders of elements of $\mathbf{F}_{2048}^{\times}$?
(b) For a given $\alpha \in \mathbf{F}_{2048}^{\times}$, what is the smallest set of powers of α that we need to compute to see if α is primitive? Briefly EXPLAIN your answer, referring to part (a).
(9) Divisors of $204711,23,89,2047$

$$
\text { NB. } \alpha^{2047} \text { always }=1 \text {, so no } \text { he }
$$

5. (12 points) Let \mathbf{F}_{64} be the field of order $64=2^{6}$, and let \mathbf{F}_{64}^{\times}be the multiplicative group
of \mathbf{F}_{64}.
(a) Let α be a primitive element of \mathbf{F}_{64}. What is the order of α ? Briefly EXPLAIN your
answer.

Circle the true statement and explain how to find such an element β in terms of the A/V
primitive element α.
(a) ord $(\alpha)=64-1=63$
(b) $\beta=\alpha^{21} ; \operatorname{ork}(\beta)=\frac{63}{\operatorname{gcd}(21,63)}=3$
6. (14 points) Let α be a primitive element of \mathbf{F}_{256}. Find
7. (14 points) Let α be a primitive element of \mathbf{F}_{256}. Find the minimal polynomial $m(x)$ of
α^{5} over \mathbf{F}_{2}, expressed as a product of terms of the form $\left(x-\alpha^{i}\right)$. Show all your
$\operatorname{art}(\alpha)=255, \alpha^{255}=1$

$$
\begin{aligned}
& \theta_{5}=\left\{\alpha^{5}, \alpha^{10}, \alpha^{20} \alpha^{40}, \alpha^{80}, \alpha^{160}\right. \\
&\left.\alpha^{65}, \alpha^{130}\right\} 260-255=5 \sqrt{320-255} \\
& m(x)=\left(x-\alpha^{5}\right)\left(x-\alpha^{10}\right)\left(x-\alpha^{20}\right)\left(x-\alpha^{40}\right) \\
&\left(x-\alpha^{80}\right)\left(x-\alpha^{160}\right)\left(x-\alpha^{65}\right)\left(x-\alpha^{170}\right)
\end{aligned}
$$

7. (14 points) Note that in $\mathbf{F}_{2}[x]$, we have

$$
\begin{aligned}
& x^{5}+x^{2}+1=\left(x^{2}+1\right)\left(x^{3}+x\right) \\
& \underset{x^{3}+1}{b}=(x+1)\left(x^{2}+x+1\right)+(x+1) \text {, } \\
& A_{2}^{\prime} \\
& x^{2}+x+1=(x)(x+1)+1
\end{aligned}
$$

(I.e., you are given the above facts and do not need to check them yourself.)

Let $\mathbf{F}_{32}=\mathbf{F}_{2}[\alpha]$, where α is a root of $x^{5}+x^{2}+1$ Find the multiplicative inverse of
$\beta=\alpha^{3}+\alpha$. Show all your work.
rm =0
A

$$
\begin{aligned}
& O=\left(\alpha^{2}+1\right) \beta+\left(\alpha^{2}+\alpha+1\right) \\
& \alpha^{2}+\alpha+1=\left(\alpha^{2}+1\right) \beta
\end{aligned}
$$

θ_{2}

$$
\begin{aligned}
\theta_{2} \quad \alpha^{+1} & =\beta+(\alpha+1)\left(\alpha^{2}+\alpha^{+1}\right) \\
& =\beta+(\alpha+1)\left(\alpha^{2}+1\right) \beta \\
& =1 \beta+\left(\alpha^{3}+\alpha^{2}+\alpha+1\right) \beta \\
& =\left(\alpha^{3}+\alpha^{2}+\alpha\right) \beta \\
\nabla_{3} 1 & =\alpha(\alpha+1)+\left(\alpha^{2}+\alpha+1\right) \\
& =\alpha\left(\alpha^{3}+\alpha^{2}+\alpha^{2} \beta^{2}+\left(\alpha^{2}+1\right) \beta\right. \\
& =\left(\alpha^{4}+\alpha^{3}+\alpha^{2}\right) \beta+\left(\alpha^{2}+1\right) \beta \\
1 & =\left(\alpha^{4}+\alpha^{3}+1\right) \beta \\
\Rightarrow \beta^{-1} & =\alpha^{4}+\alpha^{3}+1
\end{aligned}
$$

$$
2^{9}
$$

8. (18 points) Let $E=\mathbf{F}_{512}$, let β be a primitive element of E, and let $\alpha=\beta^{7}$. Note that the order of α is 73 (ie., you are given this fact and do not need to check it or justify it).
Let \mathcal{C} be the BCH code given by E, α, an $\delta=5$ over \mathbf{F}_{2}.
(a) Find the generating poly rial $g(x)$ of \mathcal{C} express
nomials $m_{i}(x)$, where $m_{i}(x)$ is the minimal polynomial of α^{i}. (You minimal polyexpand each $m_{i}(x)$ as a product of terms of the form $\left(x-\alpha^{j}\right)$.) Show all your work, especially your orbit calculations.
(b) Find $k=\operatorname{dim} \mathcal{C}$

$$
a_{2}=1 / 13=<k
$$

(a) $g(x)=m_{1}(x) m_{3}(x) \quad \operatorname{deg} g=18$
(b) $k=n-\operatorname{deg} g=73-18=55$
$\varphi_{\text {is }}[73,55, d), d \geq 5$

$$
\begin{aligned}
& \alpha^{73}=1, n=73 \quad w_{1 n+} k \geq \delta=5 \\
& 8-1=4 \\
& \theta_{1}=[1,2,4,8,16,32,64,55,37] \\
& 96-71=23, \theta_{3}=\begin{array}{c}
{[3,6,12,24,48,23,46,19,} \\
387
\end{array} \\
& \text { 38] } \\
& 76-73=3 \checkmark
\end{aligned}
$$

(This page intentionally left blank for scratchwork or extra space.)

