Paragraph HW 09 Calculating line integrals using Stokes' Theorem Math 112, Spring 2006

- 1. Let **F** be a vector field such that:
 - The domain of **F** is $\{(x,y,z) \mid x^2+y^2+z^2>2\}$, i.e., \mathbb{R}^3 minus the closed ball of radius 2 centered at the origin.
 - $\operatorname{curl} \mathbf{F} = \mathbf{0}$ for all points in the domain of \mathbf{F} .

Let C be the circle of radius 5 and center (0,0,0) in the xy-plane in \mathbb{R}^3 , oriented counterclockwise, as shown above. (The shaded area in the picture represents the points in \mathbb{R}^3 where \mathbf{F} is not defined.) Use Stokes' Theorem to explain, using words and pictures, how we can be sure that

$$\int_C \mathbf{F} \cdot d\mathbf{s} = 0.$$

- 2. Let **F** be a vector field such that:
 - The domain of **F** is \mathbb{R}^3 minus the z-axis.
 - $\operatorname{curl} \mathbf{F} = \mathbf{0}$ for all points in the domain of \mathbf{F} .

Also, let C_1 , C_2 , and C_3 be the curves shown below. Note that the z-axis, where **F** is not defined, is indicated by a bold line.

Finally, suppose that

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = 13.$$

(continued)

- (a) Explain why the fact that $\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = 13$ does not contradict Stokes' Theorem.
- (b) Find the value of $\int_{C_2} \mathbf{F} \cdot d\mathbf{s}$. Briefly **explain** your answer, using words and pictures.
- (c) Find the value of $\int_{C_3} \mathbf{F} \cdot d\mathbf{s}$. Briefly **explain** your answer, using words and pictures. (Suggestion: Look for an oriented surface whose boundary is equal to $C_1 + C_3$. What does Stokes' Theorem say in this case?)