The fundamental theorems of calculus Math 112

All of the fundamental theorems of calculus (e.g., in 3 variables, the fundamental theorem of calculus for line integrals, Stokes' theorem, and the divergence theorem) have the following form:

Theorem. Suppose that:

- *M* is a space of dimension *m*;
- ∂M , the boundary of M, is a space of dimension m-1;
- ω is a function (possibly a vector function) defined everywhere on M, including its boundary ∂M ;
- $d\omega$ is a suitable type of derivative of ω (e.g., grad, curl, div).

Then

$$\int_M d\omega = \int_{\partial M} \omega.$$

For functions of 1 variable, the theorem is just the usual fundamental theorem of calculus:

Name	M	∂M	ω	$d\omega$	Formula
FTC	Interval $[a, b]$	Endpts a, b	f(x)	$\frac{df}{dx}$	$\int_{a}^{b} \left(\frac{df}{dx} \right) dx = f(b) - f(a)$

For functions of 2 variables, the theorems are the fundamental theorem of calculus for line integrals and Green's theorem:

Name	M	∂M	ω	$d\omega$	Formula
FTC/line	Curve C	Endpts P, Q	f(x,y)	$\operatorname{grad} f$	$\int_{C} (\operatorname{grad} f) \cdot d\mathbf{s} = f(Q) - f(P)$
${\rm Green's}$	2-D region R	Curve C	$\mathbf{F}(x,y)$	$\operatorname{curl} \mathbf{F}$	$\int_{R} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} dA = \int_{C} \mathbf{F} \cdot d\mathbf{s}$

The derivatives involved in these theorems form the following chain:

Scalar function
$$\xrightarrow{\operatorname{grad}}$$
 Vector field $\xrightarrow{\operatorname{scalar curl}}$ Scalar function

Note that the composition of two consecutive derivatives in this chain is 0, i.e., $\operatorname{curl}(\operatorname{grad} f) = 0$.

For functions of 3 variables, the theorems are the fundamental theorem of calculus for line integrals, Stokes' theorem, and the divergence theorem:

Name	M	∂M	ω	$d\omega$	Formula
FTC/line					$\int_{C} (\operatorname{grad} f) \cdot d\mathbf{s} = f(Q) - f(P)$
Stokes'					$\int_S (\operatorname{curl} \mathbf{F}) \cdot d\mathbf{S} = \int_C \mathbf{F} \cdot d\mathbf{s}$
Divergence	3-D region R		$\mathbf{F}(x,y,z)$	$\operatorname{div}\mathbf{F}$	$\int_{R} (\operatorname{div} \mathbf{F}) \cdot dV = \int_{S} \mathbf{F} \cdot d\mathbf{S}$

The derivatives involved in these theorems form the following chain:

Scalar function
$$\xrightarrow{\operatorname{grad}}$$
 Vector field $\xrightarrow{\operatorname{curl}}$ Vector field $\xrightarrow{\operatorname{div}}$ Scalar function

Note that composition of two consecutive derivatives in this chain is 0, i.e., $\operatorname{curl}(\operatorname{grad} f) = \mathbf{0}$ and $\operatorname{div}(\operatorname{curl} \mathbf{F}) = 0$.