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Motivating Clinical Application

EEG monitoring of ECT

Electroconvulsive therapy is a treatment for major
depression.
EEG has been used as one of the primary methods of ECT
monitoring.
Study was conducted at Duke University by A. Krystal and
collaborators.
Maximize the therapeutical efficacy of the treatment while
minimizing the side effects. Clinically relevant question:
Are there any EEG features that can be associated with
treatment efficacy?
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Motivating Clinical Application

The Ictal-19 data set

19 EEG channels recorded during ECT seizure
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Aim: characterize the redundancy among the 19 channels
as a preliminary step towards a better understanding of the
physiology underlying the effectiveness of ECT.
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Motivating Clinical Application

ECT Data: Single Channel
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Motivating Clinical Application

EEG monitoring of ECT

EEG phases during ECT monitoring: baseline pre-ictal→
electrical stimulus (blocked)⇒ pre-ictal→ epileptic recruiting
→ polyspike→ polyspike and slow wave→ termination→
post-ictal
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Motivating Clinical Application

Multi-patient data

Further data analyses: latent components in the 2-channel
EEG data set
– Many multiple series
– One seizure: 2 channels, 256 Hz (20-26,000 observations
each)
– Repeat:

different ECT treatment (level, duration of stimulus, drugs,
...)

Clinical issues: treatment effects on seizure patterns?
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Motivating Clinical Application

Stationarity vs Nonstationarity

time

0 50 100 150 200

-3
0

0
-2

0
0

-1
0

0
0

1
0

0
2

0
0

time

0 50 100 150 200

-3
0

0
-2

0
0

-1
0

0
0

1
0

0
2

0
0

,

time

0 500 1000 1500 2000

-30
0

-20
0

-10
0

0
10

0
20

0

,



AR and TVAR Models Mixtures of Autoregressions (MAR) Discussion

Autoregressive Models and Decompositions

Autoregression (AR)

yt = φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt ,

with εt ∼ N(0, v).

AR characteristic polynomial

Φ(u) = 1− φ1u − φ2u2 − . . .− φpup.

If all the roots of Φ(u) lie outside the unit circle, i.e., if Φ(u) = 0
only when |u| > 1, the AR(p) process above is stationary.
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Autoregressive Models and Decompositions

Conditional Bayesian inference in AR models

Bayesian inference requires prior distributions on the model
parameters φ = (φ1, . . . , φp)′ and v . The prior and the
likelihood are then combined to obtain the posterior distribution
via:

p(φ, v |y) ∝ p(y|φ, v)× p(φ, v),

or via
p(φ, v |y) ∝ p(y(p+1):n|y1:p,φ, v)× p(φ, v)

in the conditional case.
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Autoregressive Models and Decompositions

Priors for AR models

Conjugate priors
Multivariate normal prior on (φ|v): φ ∼ N(0, vΣ).
Inverse-Gamma prior on v or equivalently, Gamma prior on
the precision 1/v .

This is computationally easy but does not restrict the AR
coefficients to the stationary region.
Non-conjugate priors. Many alternatives...
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Autoregressive Models and Decompositions

Decompositions: AR case

If yt ∼ AR(p), it is possible to show that:

yt =
c∑

j=1

zt ,j +

p∑
j=2c+1

xt ,j

zt ,j ∼ quasi-periodic ARMA(2,1)
“sinusoid” with randomly time-varying amplitude and phase
and
constant characteristic frequency ωj and modulus rj

xt ,j ∼ AR(1)
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Autoregressive Models and Decompositions

Pros & Cons of AR models

Advantages of AR models:
Linear⇒ (depending on the priors) these models are easy
to fit. In particular, they can be fitted in real time.
Some functions of the AR parameters are interpretable.
E.g., for quasiperiodic processes it is possible to describe
activity in various frequency bands.

Disadvantages:
Not appropriate for nonstationary time series.
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Autoregressive Models and Decompositions

Better Models...

Q. What can be better than an autoregressive model? (and still
relatively simple...)

An autoregressive model with time-varying parameters
Two (or more) autoregressions....
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Autoregressive Models and Decompositions

Better Models...

Q. What can be better than an autoregressive model? (and still
relatively simple...)

An autoregressive model with time-varying parameters
Two (or more) autoregressions....
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Time-varying Autoregressions

TVAR Models

Time-varying autoregressions

yt =

p∑
i=1

φt ,iyt−i + εt , εt ∼ N(0, vt ),

φt ,i = φt−1,i + ωt ,i ωt ,i ∼ N(0,wt ,i)

vt = δv vt−1/ηt , ηt ∼ Beta(at ,bt ).

Advantages:
Locally linear⇒ (again, depending on the priors) models
are easy to fit. Kalman filters can be used to fit the models
in real time.
Interpretable (locally).

Disadvantages:
Do capture some types of nonstationarities but not all.
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Time-varying Autoregressions

Decompositions: TVAR case

If yt ∼ TVAR(p), it is possible to show that:

yt =
c∑

j=1

zt ,j +

p∑
j=2c+1

xt ,j

zt ,j ∼ quasi-periodic TVARMA(2,1)
“sinusoid” with randomly time-varying amplitude and phase
and
time-varying characteristic frequency ωt,j and modulus rt,j

xt ,j ∼ TVAR(1)

Note: Interpretation is approximate.
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Results

Single channel decompositions

Decomposition results: based on posterior mean of φt at each
time t .

Trajectories of estimated latent components
Trajectories of characteristic frequencies and moduli
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Results

Decomposition of channel Cz
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Results

Frequency trajectories in channel Cz
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Results

Latent Components: 19 channels
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Results

Latent Components: 19 channels
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Results

We can also use the results obtained from the TVAR
approach to comparing treatments...
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Results
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Results
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Motivating Non-Clinical Application

Cognitive fatigue data

Data collected in EEG lab at NASA Ames by L. Trejo and
collaborators
30-channel EEGs were recorded from 16 subjects who
performed up to 180 min of non-stop computer-based
mental arithmetic
Observed behavior included ratings of activity and
alertness from videotape recordings of each participant’s
performance
Performance measures: response time and response
accuracy
Physiological measures: derived from EEGs and EOGs



AR and TVAR Models Mixtures of Autoregressions (MAR) Discussion

Motivating Non-Clinical Application

Cognitive fatigue data

EEGs were...
submitted to algorithms for detection & elimination of
artifacts
epoched around the stimulus (i.e., from -5s pre-stimulus to
+8 post-stimulus)
low passed filtered (50 Hz; zero phase shift; 12 dB/octave
roll off)
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Motivating Non-Clinical Application

Cognitive fatigue data

Epochs

Problem
solving
3+5-7
>=<
2?
Time: 13s
(-5s,8s)

⇒ Response ⇒
Inter-trial
interval
Time: 1s

⇒

Problem
solving
3+5-7
>=<
2?
Time: 13s
(-5s,8s)

⇒
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Motivating Non-Clinical Application

Cognitive fatigue data

Epochs
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Motivating Non-Clinical Application

Cognitive fatigue data

For each individual and each channel we have a collection of
“consecutive” epochs...

Epochs
An epoch is a time series of 1664 observations. It corresponds
to 13 seconds of recording, with 5s prior to the stimulus and 8s
after the stimulus. The sampling rate is then 128 Hz.

Note: total number of epochs varies with the subject.



AR and TVAR Models Mixtures of Autoregressions (MAR) Discussion

Motivating Non-Clinical Application

Cognitive fatigue data

Goals
Can we detect fatigue from EEG data?
If so, what characterizes fatigue?
Are there two or more mental states of alertness?
Long term: automatic system for fatigue detection from
physiological signals
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Motivating Non-Clinical Application

Previous Analyses: Classification via KPLS-DLR

Previous analyses include kernel partial least squares
decomposition of multi-channel EEG spectra coupled with a
discrete-output linear classifier (KPLS-DLR, Rosipal, Trejo &
Matthews, 2003)
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Motivating Non-Clinical Application

Classification via KPLS-DLR
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Motivating Non-Clinical Application

Motivation for other model-based analyses

We would like a framework that allows us to interpret the
results in terms of parameters that are meaningful (e.g.,
brain waves and brain activity)
Include prior information collected from previous
experiments
We want to answer questions such as, what is the
probability that a given subject is fatigued at time t?
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AR-based Analyses

Descriptive analysis: subject skh

Let yt ,q,j be the t-th observation of epoch q for channel j , with
t = 1 : T , q = 1 : Q, and j = 1 : J. For subject skh we have
T = 1664, Q = 864 and J = 30.

yt ,q,j =

p∑
i=1

φi,q,jyt−i,q,j + εt ,q,j , εt ,q,j ∼ N(0, vq,j).

We look at the posterior distribution of the reciprocal roots of
the polynomial

Φi,q,j(u) = 1− φ1,q,ju − . . .− φp,q,jup.
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AR-based Analyses

Preliminary results: skh
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Mixture Models

MAR

We assume that with probability pq(k) each epoch q is
described by the autoregressive modelMq(k), with

Mq(k) : yt ,q = φ
(k)
1 yt−1,q − . . .− φ

(k)
p yt−p,q + ε

(k)
t ,q ,

with ε(k)
t ,q ∼ N(0, v).

The models {Mq(1), . . . ,Mq(K )} represent K brain states.



AR and TVAR Models Mixtures of Autoregressions (MAR) Discussion

Mixture Models

MAR: Further Model Structure

Let Dq−1 = {D0,y1:(q−1)}.

Prior and posterior at epoch q

yq

↓
πq(k) ≡ Pr [Mq(k)|Dq−1] =⇒ pq(k) ≡ Pr [Mq(k)|Dq]

Transition probabilities

Pr [Mq(k)|Mq−1(i),Dq−1] = Pr [Mq(k)|Mq−1(i),D0] ≡ π(k |i)
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Mixture Models

MAR: On-line Posterior Inference

Non-conjugate prior distributions are placed on the AR
coefficients⇒ Posterior inference is not available in closed
form.
Regardless of the priors, approximations are used so that
the number of components in the mixture model does not
increase over time.
On-line inference: (a) Approximations (b) Sequential
Monte Carlo Algorithms.
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MAR-based Results

Fatigue data: subject rwc, channel P8
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Remarks

TVAR and MAR models are useful to describe complex
signals such as EEGs
Computational challenges:

Large-dimensional data sets
Models with a large number of parameters
Non-conjugate priors
On-line inference

Future: Multivariate approaches
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Statistics PhD
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in the form of Fellowships, Teaching and Research
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S-STATSMODEL fellowships

Application Procedure (go to
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the School of Engineering admissions website.
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(FAFSA).
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