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• We offer MS and PhD in Statistics and Applied Mathematics.

The application period is in the Fall of each year with and early

January deadline.

• There are 12 faculty in AMS, six in Applied Mathematics and six

in Statistics.
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Statistics

3



• Bayesian methods: all of us.

• Bayes Non-parametric: David draper, Athanasios Kottas and

Abel Rodŕıguez.
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• Computer models: Herbie Lee, Athanasios Kottas and Bruno

Sansó.

• Environmental applications: Athanasios Kottas and Bruno Sansó.

• Time series: Abel Rodŕıguez, Raquel Prado.

• Medical/biological applications: David Draper, Raquel Prado,

Abel Rodŕıguez.
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P (A|B) =
P (B|A)P (A)

P (B)

Thomas Bayes: 1702 – 1761



A useful framework for statistical models applied to problems in the

physical sciences is given by hierarchical models with the levels:

Observational Model:

p(Y |θ)

measurement error

Process Model:

p(θ|λ)

process variability

Parameters Model:

p(λ)

prior information

Hierarchical Models
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To learn about θ we obtain the posterior distribution p(θ|Y ) using

Bayes theorem.

Unfortunately, oftentimes the posterior distribution is intractable.

A popular approach is to obtain samples from p(θ|Y ) and use them

for inference on θ.

A very common method for sample-based inference is to simulate a

Markov chain whose equilibrium distribution is p(θ|Y ). After

running the chain for a “burn in” period necessary to reach steady

state the samples are collected and used for inference.

Sample-Based Inference
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July average SST from WOA.

• Climatologies of ocean tem-

peratures describe the mean

state of the ocean using histori-

cal records.

• They are used to understand

the properties, distribution and

circulation of water masses.

• They are also used to calibrate

remote sensors and for the spin

up, forcing, relaxation and vali-

dation of numerical models.
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• In addition to the climatic

mean, scientists are interested

in the variability around the

mean, or anomalies.

• Finally, there is keen inter-

est in the detection of long-term

changes in ocean properties.

• At present, one of the

standard climatological prod-

ucts is provided by the Na-

tional Oceanographic Data Cen-

ter (NODC) and is the World

Ocean Atlas 2001, version 2.

July average SSS from WOA.
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• The climatology must be smooth and realistic, when compared to

other existing products like the World Ocean Atlas (WOA).

• Anomaly fields must capture medium- to large-scale features and

average zero everywhere

• The trend fields must be smooth.

• All fields must be accompanied by measures of uncertainty.

• The method must be useful in a large geographical domains and

long time frames.

• Observational errors should be accounted for.
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Why use a sophisticated spatio-temporal model when an average is

all that is needed?

• Data distribution is uneven in space and time. A model can

borrow strength from data-dense periods and locations.

• To account for location- and time-varying seasonal cycles, long

term trends and high frequency variability.

• To account for observational error.

• To incorporate different sources information, including structural

knowledge.

• To produce probabilistic measures of uncertainty.

Why a Space-Time Model?
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The domain S (gray area) and the grid J (bullets; rJ = 4◦) used for the

convolving process. A transect with three “case study” points. A random

sample of 1% of the data. Temporal distribution of the data.
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We use data

from the NODC

World Ocean

Database 2005,

collected with

four types of

instruments

between 1961

and 1990.
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We use data

from the NODC

World Ocean

Database 2005,

collected with

four types of

instruments

between 1961

and 1990.

Data set name no. obs. variance

OSD 261,172 6.25 × 10−2

CTD 29,879 6.25 × 10−6

XBT 419,263 2.5 × 10−3

MBT 439,783 2.025 × 10−1

Data
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To reach the above goals, we build flexible spatio-temporal

processes based on representing a Gaussian process as the

convolution of simple processes over a grid.

Discrete Process Convolutions

9



To reach the above goals, we build flexible spatio-temporal

processes based on representing a Gaussian process as the

convolution of simple processes over a grid.

For any point s in space S, say θ(s), we write

θ(s) =
∑

j∈J

K[s − j,ω(s)]ψ(j)

J is a grid in S. K[·,ω] is a kernel depending on a parameters ω,

and ψ(j) is a random field with a simple correlation structure.We

term this a Discrete Process Convolution.

Discrete Process Convolutions
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Spatial Process Weighting Kernels Component Surfaces
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Spatial process generated from a mixture with J = 2. πj(·) are

weighting kernels. f ′
j(s)βj are linear regression surfaces.

Linear Spatial Random Fields
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Time 1 Time 2 Time 3
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A time series of spatial mean fields obtained through a

locally-weighted mixture of J = 6 components with fixed weighting

kernels and dynamic regression coefficients.

Dynamic Conditionally Linear Models
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The SST observation xi,m,y(s) collected with instrument

i = 1, . . . , 4, in month m, year y and location s follows

xi,m,y(s) ∼ N
(

θm,y(s), τ2
i

)

.

Model for North Atlantic SSTs
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The SST observation xi,m,y(s) collected with instrument

i = 1, . . . , 4, in month m, year y and location s follows

xi,m,y(s) ∼ N
(

θm,y(s), τ2
i

)

.

θm,y(s) ∼ N
(

∑

j
K[s − j,Λ(s)]

(

α(j) + βt(j)wT
t +

η(j)(t− 180)) ,Φ(s)2
)

.

t = m+ 12(y− 1961) and Φ(s)2 =
∑

j
K[s− j,Ω(s)] exp (σ(j)) .

Model for North Atlantic SSTs
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August SST from WOA01 August SST from LS09

Results: August Climatology
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Posterior mean

for monthly SST

at s2 (◦C).
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The development of a model that considers temperature and

salinity jointly over a 3D domain needs to account the following

issues:
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The development of a model that considers temperature and

salinity jointly over a 3D domain needs to account the following

issues:

• Data sparsity. There are substantially more observations for the

surface of the ocean than for the deep water. Furthermore, salinity

is sampled about 10 times less than temperature.

• The column of water needs to satisfy a density stability

constraint. That is, density must increase with depth. Density is

related to temperature and salinity via the equation of state.

• The previous two points imply that we need to consider a

hierarchical structure for our statistical model that is inspired by

physical equations.

Model for Salinity and Temperature
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We consider observations averaged over grid cells indexed by

i = (i1, i2, i3) ∈ I. The observation equation is given by




Tt(i)

St(i)



 ∼ N2



θt(i),





τ2
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nT,t(i)
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St(i)



 ∼ N2



θt(i),





τ2

T

nT,t(i)
0

0
τ2

S

nS,t(i)









The process equation is

θt(i) ∼ N2

(

∑

j
K[i − j,w(i)]λt(j),C(i)

)

C(i) = τθ1
τθ2





τθ1

τθ2

Φ
(

∑

j K[i − j]̟(j)
)

Φ
(

∑

j K[i − j]̟(j)
)

τθ2

τθ1





with j in a grid J, w a DPC and an MRF for ̟.
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17



λt(j) = λt−1(j) + αt−1(j)st + βt−1(j)ct + γt−1(j) + ǫλ
t (j)

αt(j) = αt−1(j) + ǫα
t (j)

βt(j) = βt−1(j) + ǫ
β
t (j)

γt(j) = γt−1(j) + ǫ
γ
t (j)

with (ǫλ
t (j), ǫα

t (j), ǫβ
t (j), ǫγ

t (j))′ ∼ N8 (0,Wt(j)), Wt(j) obtained

using discount factors, st = sin (2πt/52) and ct = cos (2πt/52).

The Model for the Latent Process

18



The physical constraints are imposed by assuming dependence on

the zonal and meridional velocities, υt(i) respectively, and νt(i)

and the density ρt(i).

υt(i) ∼ N (υmin(i),υmax(i))
(

mυ, τ
2
υ

)

νt(i) ∼ N (νmin(i),νmax(i))
(

mν , τ
2
ν

)

where, assuming geostrophic conditions,

mυ =
z(i)g(i)

2ρt(i)fc(i)

∂ρt(i)

∂y
and mν = −

z(i)g(i)

2ρt(i)fc(i)

∂ρt(i)

∂x

Here z(i) is thickness, g(i) is the gravity acceleration and fc(i) is

the Coriolis parameter.

The Model for Velocities
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Density is determined by the equation of state, fw(·) that provides

density as a function of temperature, salinity and pressure (depth).

Thus

ρt(i) ∼ N (ρt(A(i)),ρt(B(i)))
(

fw (θt(i), p(i)) , τ
2
ρ

)

A(i) and B(i) denote respectively the grid points of I immediately

above and below i.

The Model for Densities
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• We run the

3D joint model

for weekly data

corresponding

to the Iberian

Peninsula from

1961 to 1970.

Temperature Variability
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• We run the

3D joint model

for weekly data

corresponding

to the Iberian

Peninsula from

1961 to 1970.

• The fig-

ure shows the

estimated tem-

peratures for

different depths

in an area off the

coast of Galicia.
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Estimated salinity field for an area off the coast of Galicia in July

1961. We observe a very clear plume of salty water close to the

coast that is known to come from the Mediterranean Sea.

Salinity Variability
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Time varying thermocline at Cape St.

Vincent.

• The Thermocline is a

thin ocean layer where

the temperature gradi-

ent is high relative to the

upper and lower layers.

Thermocline
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Time varying thermocline at Cape St.

Vincent.

• The Thermocline is a

thin ocean layer where

the temperature gradi-

ent is high relative to the

upper and lower layers.

• It separates, in terms

of temperature, the high

varying surface waters

to the smoothly varying

deep ocean waters.

Thermocline
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• We have developed spatio-temporal models for ocean variables

that are non-stationary in either space or time. We are able to

capture important space- and time-varying features of the ocean.

• Our model includes observational errors and realistic descriptions

of the latent processes governing the evolution of ocean variables.

• The model is able to provide probabilistic assessments of the

variabilities included in the estimated quantities. All estimation

variabilities are accounted for in the final product.
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“Spatio-temporal Variability of Ocean Temperature in the Portugal

Current System”. Journal of Geophysical Research Oceans, 111,

C04010, doi:10.1029/2005JC003051.

Discussion

25



• Our model is able to handle large data sets. By using kernels

with compact support and making use of the structure of the

CDLM we are able to parallelize the estimation algorithms.

• We are currently refining the evolution equation to include

advection and conservation of mass for the latent processes.

• Reference: Ricardo T. Lemos, Bruno Sansó (2006)
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• Reference: Ricardo T. Lemos, Bruno Sansó (2009) “A
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North Atlantic Sea Surface Temperature”. Journal of the American

Statistical Association, 104, pp. 5–25.
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