A bijection on core partitions

Brant C. Jones brant@math.ucdavis.edu

Joint with Chris Berg and Monica Vazirani University of California, Davis

April 22, 2009

Introduction

My research relates to the study of *symmetry*, with applications to Chemistry, Physics, Differential Equations

In this talk we'll describe some geometry associated to the *symmetric* group of permutations.

The symmetric group S_n is the set of all **bijections**

$$\sigma: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$$

with **composition** as the group operation.

For example,
$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{bmatrix}$$
 and $\tau = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5 \end{bmatrix}$ are permutations in S_5 and if we compose them, we get

$$\tau \sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{bmatrix}$$

٠

< 🗇 🕨 < 🖃 🕨

The symmetric group S_n has a presentation with generators

 $s_1, s_2, \ldots, s_{n-1}$

and relations

$$s_i^2 = id$$

$$s_i s_j = s_j s_i \quad \text{for } |i - j| \ge 2,$$

$$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$$

We think of each s_i as an *adjacent transposition*:

$$s_i = \begin{bmatrix} 1 & 2 & \cdots & i & i+1 & \cdots & n \\ 1 & 2 & \cdots & i+1 & i & \cdots & n \end{bmatrix}.$$

Brant C. Jones (UC Davis)

- 4 回 ト - 4 回 ト

Groups with a similar presentation in terms of generators and relations are called *Coxeter groups*. They have generators s_1, s_2, \ldots, s_n with each $s_i^2 = id$, and

$$(s_i s_j)^{m_{ij}} = id.$$

for some $m_{ij} \ge 2$. The relation $s_i^2 = id$ means that $s_i = s_i^{-1}$.

For example,

$$id = (s_i s_j)^2 = s_i s_j s_i s_j$$

is equivalent to

$$s_j s_i = s_i s_j$$

and

$$id = (s_i s_j)^3 = s_i s_j s_i s_j s_i s_j$$

is equivalent to

$$s_j s_i s_j = s_i s_j s_i$$

The relations in a Coxeter group are often visualized in a combinatorial graph.

- Vertices = generators.
- No edge $\iff (s_i s_j)^2 = id \iff s_i s_j = s_j s_i.$
- Unlabeled edge $\iff (s_i s_j)^3 = id \iff s_i s_j s_i = s_j s_i s_j.$
- Edge labeled by $m \iff (s_i s_j)^m = id \iff s_i s_j s_i \cdots = s_j s_i s_j \cdots$

For example, S_n has the Coxeter graph

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The relation $s_i^2 = id$ means that $s_i = s_i^{-1}$. We can view the generators s_i as **reflections** of a vector space.

Definition

Let $u \in \mathbb{R}^n$. A *reflection* through the hyperplane orthogonal to u is a linear map s_u sending

$$v \mapsto v - \frac{2\langle u, v \rangle}{\langle u, u \rangle} u$$

For S_n , we can combine our two points of view if we take a vector space \mathbb{R}^n with orthonormal basis $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$. E.g. let n = 3. Then define $\alpha_1 = \varepsilon_1 - \varepsilon_2$ and $\alpha_2 = \varepsilon_2 - \varepsilon_3$. Then,

$$s_{\alpha_1}(\varepsilon_1) = \varepsilon_1 - \frac{2\langle \varepsilon_1, \varepsilon_1 - \varepsilon_2 \rangle}{\langle \varepsilon_1 - \varepsilon_2, \varepsilon_1 - \varepsilon_2 \rangle} (\varepsilon_1 - \varepsilon_2) = \varepsilon_1 - (\varepsilon_1 - \varepsilon_2) = \varepsilon_2,$$

$$s_{\alpha_1}(\varepsilon_2) = \varepsilon_2 - rac{2\langle \varepsilon_2, \varepsilon_1 - \varepsilon_2
angle}{\langle \varepsilon_1 - \varepsilon_2, \varepsilon_1 - \varepsilon_2
angle} (\varepsilon_1 - \varepsilon_2) = \varepsilon_2 + (\varepsilon_1 - \varepsilon_2) = \varepsilon_1.$$

SO,

$$egin{aligned} & m{s}_{lpha_1} = egin{bmatrix} arepsilon_1 & arepsilon_2 & arepsilon_3 \ arepsilon_2 & arepsilon_1 & arepsilon_2 & arepsilon_1 & arepsilon_2 & arepsilon_3 \ arepsilon_{lpha_2} & arepsilon_1 & arepsilon_2 & arepsilon_2 \ arepsilon_1 & arepsilon_3 & arepsilon_2 \ arepsilon_1 & arepsilon_3 & arepsilon_2 \ arepsilon_1 & arepsilon_3 & arepsilon_2 \ arepsilon_2 & arepsilon_1 & arepsilon_2 & arepsilon_2 \ arepsilon_1 & arepsilon_3 & arepsilon_2 \ arepsilon_2 & arepsilon_2 & arepsilon_2 \ arepsilon_1 & arepsilon_3 & arepsilon_2 \ arepsilon_2 & arepsilon_2 \ arepsilon_2 & arepsilon_2 \ arepsilon_2 & arepsilon_2 \ areps$$

3

(日) (周) (三) (三)

◆□> ◆□> ◆豆> ◆豆> □ 豆

A subgroup of S_n is any subset of permutations that is closed under the composition operation.

One special way this can happen is by taking a **subset of the generators**, called a *parabolic subgroup*. For example, S_4 is a parabolic subgroup of S_5 :

These are all the permutations in which the last entry 5 is fixed.

$$S_4 = egin{bmatrix} 1 & 2 & 3 & 4 & 5 \ * & * & * & * & 5 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

If we wanted to use our understanding of S_4 to understand S_5 , we could specify permutations in S_5 by

- (1) Permute the first four entries.
- (2) Move the entry 5 into its final position.

For example, we could build $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{bmatrix}$ as

Affine Symmetric Group

The affine symmetric group $\widetilde{S_n}$ is presented as a Coxeter group by:

- Generators $s_0, s_1, \ldots, s_{n-1}$, with $s_i^2 = id$,
- Commuting relations $s_i s_j = id$ if $|i j| \ge 2$,
- Braid relations $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ and $s_0 s_{n-1} s_0 = s_{n-1} s_0 s_{n-1}$.

This is an **infinite** Coxeter group, but notice that it has **finite** S_n as a **parabolic subgroup**.

Affine Symmetric Group

We can again view the generators s_i as **reflections** of a vector space with orthonormal basis $\{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}$. The formula for reflection by $s_1, s_2, \ldots, s_{n-1}$ is exactly the same as before:

• For $1 \le i \le n-1$, let s_i be the reflection that interchanges ε_i and ε_{i+1}

The reflection by s_0 is an **affine reflection** defined on $v = \sum_{i=1}^{n} a_i \varepsilon_i$ by

$$s_0(v) = (a_n+1)\varepsilon_1 + a_2\varepsilon_2 + \cdots + a_{n-1}\varepsilon_{n-1} + (a_1-1)\varepsilon_n.$$

・ロト・(局)・(目)・(目)・(日)・(の)

Affine Symmetric Group

The simple roots Δ of type A_{n-1} are

 $\alpha_1 = \varepsilon_1 - \varepsilon_2, \quad \alpha_2 = \varepsilon_2 - \varepsilon_3, \quad \dots, \quad \alpha_{n-1} = \varepsilon_{n-1} - \varepsilon_n.$

The **Z**-span Λ_R of Δ is called the *root lattice of type* A_{n-1} . Note that these are just **vectors whose coordinates sum to 0**.

Recall that S_n is a **parabolic subgroup** of $\widetilde{S_n}$. It turns out that there is a unique way to write any affine permutation as a pair

(element of the root lattice , finite permutation)

However, it's better to look at all the affine permutations that correspond to a given root lattice point, and choose a special one to represent the root lattice point. This affine permutation called a *minimal length coset representative*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Brant C. Jones (UC Davis)

A bijection on core partitions

April 22, 2009 16 / 43

・ロト・(局)・(目)・(目)・(日)・(の)

Affine Symmetric Group

We want to study

E.g.

April 22, 2009 17 / 43

Let $\lambda = (\lambda_1 \ge \ldots \ge \lambda_r)$ be a *partition* and $n \ge 2$ be an integer.

The *n*-residue of a box (i, j) is the least nonnegative integer $\equiv j - i \mod n$.

イロト 不得下 イヨト イヨト 二日

Let $\lambda = (\lambda_1 \ge \ldots \ge \lambda_r)$ be a *partition* and $n \ge 2$ be an integer.

Example

0	1	2	3	0	1	2	3
3	0	1	2	3			
2	3						
1	2						
0							
3]						
2							

The *n*-residue of a box (i, j) is the least nonnegative integer $\equiv j - i \mod n$.

イロト 不得下 イヨト イヨト 二日

Let $\lambda = (\lambda_1 \ge \ldots \ge \lambda_r)$ be a *partition* and $n \ge 2$ be an integer.

Example

The *hook length* of a box (i, j) is the number of boxes to the **right and below** the box, including itself. It is denoted $h_{(i,j)}^{\lambda}$.

- 4 回 ト 4 回 ト 4 回 ト

Let $\lambda = (\lambda_1 \ge \ldots \ge \lambda_r)$ be a *partition* and $n \ge 2$ be an integer.

Example

14	10	7	6	5	3	2	1
10	6	3	2	1		1	
6	2						
5	1						
3							
2							
1							

The *hook length* of a box (i, j) is the number of boxes to the **right and below** the box, including itself. It is denoted $h_{(i,j)}^{\lambda}$.

Cores

Definition

A partition λ is an *n*-core if $n \nmid h_{(i,j)}^{\lambda}$ for every box (i,j) of λ .

Example

14	10	7	6	5	3 2 1	λ is a 4-core.
10	6	3	2	1		
6	2					
5	1					
3						
2						
1						

Cores

Question

Given an n-core, how can we project to obtain an (n-1)-core?

æ

- 本間 と 本語 と 本語 と

n-core partitions index:

- Schubert cells in the affine Grassmannian Gr of $SL(n, \mathbb{C})$. (Gr $\cong SL_n(\mathbb{C}((t)))/SL_n(\mathbb{C}[[t]])$.)
- k-Schur functions and dual k-Schur functions in $H_*(Gr) \cong \Lambda_n$ and $H^*(Gr) \cong \Lambda^n$, respectively.
- Blocks in the representation theory of the symmetric group S_k over a field of characteristic n > 0.

Cores

•
$$C_n$$
 = The set of all *n*-cores.

•
$$C_n^k$$
 = The subset of C_n having first part k.

• $C_{n-1}^{\leq k}$ = The subset of C_{n-1} having first part $\leq k$.

We will define a bijection

$$\Phi_n^k: \mathcal{C}_n^k \to \mathcal{C}_{n-1}^{\leq k}$$

Then,

$$\sum_{k\geq 0} |C_n^k| x^k = \sum_{k\geq 0} \binom{k+n-2}{k} x^k = \frac{1}{(1-x)^{n-1}}.$$

(Proof:

$$\binom{k+n-2}{k} = \binom{k+n-3}{k} + \binom{k+n-4}{k-1} + \dots + \binom{n-3}{0}.$$

The partition shape is determined by first column hooklengths. These can be generalized to β -numbers.

April 22, 2009 27 / 43

3

(日) (周) (三) (三)

8		
5		
4		
2		
1		

The abacus for $\beta = (8, 5, 4, 2, 1, -1, -2, -3, ...)$ has balance number 2 = (-1) + 1 + 2.

3

過 ト イヨ ト イヨト

The abacus for $\beta = (8, 5, 4, 2, 1, -1, -2, -3, ...)$ has balance number 2. The abacus for $\beta = (9, 6, 5, 3, 2, 0, -1, -2, ...)$ has balance number 3 = 3 + (-1) + 1.

イロト イポト イヨト イヨト 二日

Theorem

Theorem 2.7.16, Lemma 2.7.38 in James–Kerber

- λ is an n-core if and only if any (equivalently, every) abacus of λ on n runners is flush.
- Moreover, in the balanced flush abacus of an n-core λ, each active bead on runner i corresponds to a row of λ whose rightmost box has residue i.

0	1	2	0
2	0		
1	2		
0			
2			

3-core

(日) (周) (三) (三)

3

April 22, 2009 32 / 43

3 x 3

< /□ > < □

0	1	2	3	0	1	2	3	$\stackrel{\Phi_4^8}{\longrightarrow}$	
3	0	1	2	3					
2	3								
1	2								
0									
3									
2					_	_			

4-core $(8, 5, 2^2, 1^3)$

3-core $(2, 1^2)$.

Let $\mathbf{a} = (a_1, \dots, a_n) \in \Lambda_R$ written in the ε_i basis, so each $a_i \in \mathbf{Z}$ and $\sum_{i=1}^n a_i = 0$.

We form a balanced flush abacus from **a** by filling the $(i-1)^{st}$ runner with beads from $-\infty$ down to level a_i .

This defines a bijection

$$\pi: \{(a_1,\ldots,a_n): a_i \in \mathbf{Z}, \sum_{i=1}^n a_i = 0\} \to \{\text{balanced flush abaci}\} \to \mathcal{C}_n.$$

・ 「 ・ ・ ・ ・ ・ ・ ・

Example

n = 4, (2, 0, 0, -2) cooresponds to

・ロン ・四 ・ ・ ヨン ・ ヨン

Proposition

Suppose that $\pi(\mathbf{a}) = \pi(a_1, \ldots, a_n) = \lambda$. Then we have

$$\lambda_1 = (a_i - 1)n + i$$

where a_i is the rightmost occurrence of the largest coordinate in **a**.

Corollary

For $k \ge 0$, let H_n^k denote the affine hyperplane

$$H_n^k = \{\mathbf{a} = (a_1, \dots, a_n) \in \mathbf{R}^n : (\mathbf{a}, \varepsilon_{(k \mod n)}) = \lceil \frac{k}{n} \rceil\} \cap V$$

inside V, where $1 \leq (k \mod n) \leq n$. Then under the correspondence π , the n-cores λ with $\lambda_1 = k$ all lie inside $H_n^k \bigcap \Lambda_R$.

イロト イポト イヨト イヨト

$$7 = \lambda_1 = (a_i - 1)n + i = (2 - 1)4 + 3.$$
$$H_4^7 = \{(a_1, a_2, a_3, a_4) : a_3 = 2\} \cap V$$

Brant C. Jones (UC Davis)

April 22, 2009 37 / 43

- < ∃ →

Image: A match a ma

э

・ロト・日本・日本・日本・日本・今日・

Theorem

Let ψ_n be the affine map defined by $\psi_n(a_1, \ldots, a_n) = (a_n + 1, a_1, a_2, \ldots, a_{n-1})$. Then,

$$\pi^{-1} \circ \Phi_n^k \circ \pi(a_1, \ldots, a_n) = \psi_{n-1}^{a_i}(a_1, \ldots, \widehat{a_i}, \ldots, a_n)$$

where a_i is the rightmost occurrence of the largest entry among $\{a_1, \ldots, a_n\}$ and the circumflex indicates omission.

.

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q ()~

We can factor this map into **translation** composed with **root system embedding**.

Example

Let n = 3. The affine hyperplane H_3^7 contains the partition $\pi(3, 1, -4) = (7, 5, 4^2, 3^2, 2^2, 1^2)$. Translation by $\mathbf{t} = (-3, 1, 2)$ sends H_3^7 to

$$\{(a_1, a_2, a_3) \in V : a_1 = 0\}$$

and in particular sends (3, 1, -4) to (0, 2, -2).

We view this as a subspace of \mathbb{R}^2 with orthonormal basis $\{e'_1, e'_2\}$ and A_{n-2} root system. The embedding identifies e'_1 with e_3 and e'_2 with e_2 and we have $\psi^3(1, -4) = (-2, 2)$ corresponding to $\Phi^7_3(7, 5, 4^2, 3^2, 2^2, 1^2) = (4, 3, 2, 1)$.

イロト 不得 トイヨト イヨト 二日

Open questions:

- How do these combinatorics generalize to other reflection groups?
- What does the projection Φ^k_n imply about cells in the affine Grassmannian, k-Schur functions, or blocks in S_n-modules?