Navigating Blindly

Multidimensional online robot motion in unknown environments

Josh Brown Kramer Illinois Wesleyan University

Lucas Sabalka

University of California, Davis, soon to be at Binghamton University

22 October, 2008

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Outline

2 What's Known: 2 dimensions

- BUG1
- Competitiveness
- CBUG
- 3
- **Our Work: Higher Dimensions**
- Fixing Negative Results
- Solving SEARCH_n and NAV_n

Introduction

What's Known: 2 dimensions Our Work: Higher Dimensions

Navigate Blindly

Our Three Tasks

• Given:

- An environment $X \subset \mathbb{R}^n$ with finite diameter
- A spherical robot, named Bob, of radius *r* > 0, equipped with:

- tactile sensor
- GPS sensor
- A starting point $S \in X$
- Possibly, a target point $T \in X$
- The tasks are:
 - COVER_n: Occupy as much of X as possible
 - SEARCH_n: Find T and move from S to T
 - NAV_n : Move from S to T
- We want an *efficient* algorithm solving the task.
 - offline if X is known
 - online if *X* is unknown

Our Three Tasks

- Given:
 - An environment $X \subset \mathbb{R}^n$ with finite diameter
 - A spherical robot, named Bob, of radius *r* > 0, equipped with:

- tactile sensor
- GPS sensor
- A starting point $S \in X$
- Possibly, a target point $T \in X$
- The tasks are:
 - COVER_n: Occupy as much of X as possible
 - SEARCH_n: Find T and move from S to T
 - NAV_n : Move from S to T
- We want an *efficient* algorithm solving the task.
 - offline if X is known
 - online if *X* is unknown

Our Three Tasks

- Given:
 - An environment $X \subset \mathbb{R}^n$ with finite diameter
 - A spherical robot, named Bob, of radius *r* > 0, equipped with:

- tactile sensor
- GPS sensor
- A starting point $S \in X$
- Possibly, a target point $T \in X$
- The tasks are:
 - COVER_n: Occupy as much of X as possible
 - SEARCH_n: Find T and move from S to T
 - NAV_n : Move from S to T
- We want an *efficient* algorithm solving the task.
 - offline if X is known
 - online if *X* is unknown

Our Three Tasks

- Given:
 - An environment $X \subset \mathbb{R}^n$ with finite diameter
 - A spherical robot, named Bob, of radius *r* > 0, equipped with:

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

- tactile sensor
- GPS sensor
- A starting point $S \in X$
- Possibly, a target point $T \in X$
- The tasks are:
 - COVER_n: Occupy as much of X as possible
 - SEARCH_n: Find T and move from S to T
 - NAV_n : Move from S to T
- We want an *efficient* algorithm solving the task.
 - offline if X is known
 - online if *X* is unknown

Our Three Tasks

- Given:
 - An environment $X \subset \mathbb{R}^n$ with finite diameter
 - A spherical robot, named Bob, of radius *r* > 0, equipped with:

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

- tactile sensor
- GPS sensor
- A starting point $S \in X$
- Possibly, a target point $T \in X$
- The tasks are:
 - COVER_n: Occupy as much of X as possible
 - SEARCH_n: Find T and move from S to T
 - NAV_n : Move from S to T
- We want an *efficient* algorithm solving the task.
 - offline if X is known
 - online if *X* is unknown

Our Three Tasks

- Given:
 - An environment $X \subset \mathbb{R}^n$ with finite diameter
 - A spherical robot, named Bob, of radius *r* > 0, equipped with:

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

- tactile sensor
- GPS sensor
- A starting point $S \in X$
- Possibly, a target point $T \in X$
- The tasks are:
 - COVER_n: Occupy as much of X as possible
 - SEARCH_n: Find T and move from S to T
 - NAV_n : Move from S to T
- We want an *efficient* algorithm solving the task.
 - offline if X is known
 - online if *X* is unknown

Our Three Tasks

- Given:
 - An environment $X \subset \mathbb{R}^n$ with finite diameter
 - A spherical robot, named Bob, of radius *r* > 0, equipped with:

- tactile sensor
- GPS sensor
- A starting point $S \in X$
- Possibly, a target point $T \in X$
- The tasks are:
 - COVER_n: Occupy as much of X as possible
 - SEARCH_n: Find T and move from S to T
 - NAV_n: Move from S to T
- We want an *efficient* algorithm solving the task.
 - offline if X is known
 - online if *X* is unknown

Our Three Tasks

- Given:
 - An environment $X \subset \mathbb{R}^n$ with finite diameter
 - A spherical robot, named Bob, of radius *r* > 0, equipped with:

- tactile sensor
- GPS sensor
- A starting point $S \in X$
- Possibly, a target point $T \in X$
- The tasks are:
 - COVER_n: Occupy as much of X as possible
 - SEARCH_n: Find T and move from S to T
 - NAV_n: Move from S to T
- We want an *efficient* algorithm solving the task.
 - offline if X is known
 - online if X is unknown

Our Three Tasks

- Given:
 - An environment $X \subset \mathbb{R}^n$ with finite diameter
 - A spherical robot, named Bob, of radius *r* > 0, equipped with:

- tactile sensor
- GPS sensor
- A starting point $S \in X$
- Possibly, a target point $T \in X$
- The tasks are:
 - COVER_n: Occupy as much of X as possible
 - SEARCH_n: Find T and move from S to T
 - NAV_n: Move from S to T
- We want an *efficient* algorithm solving the task.
 - offline if X is known
 - online if *X* is unknown

Our Three Tasks

- Given:
 - An environment $X \subset \mathbb{R}^n$ with finite diameter
 - A spherical robot, named Bob, of radius *r* > 0, equipped with:

- tactile sensor
- GPS sensor
- A starting point $S \in X$
- Possibly, a target point $T \in X$
- The tasks are:
 - COVER_n: Occupy as much of X as possible
 - SEARCH_n: Find T and move from S to T
 - NAV_n: Move from S to T
- We want an *efficient* algorithm solving the task.
 - offline if X is known
 - online if *X* is unknown

Our Three Tasks

- Given:
 - An environment $X \subset \mathbb{R}^n$ with finite diameter
 - A spherical robot, named Bob, of radius *r* > 0, equipped with:

- tactile sensor
- GPS sensor
- A starting point $S \in X$
- Possibly, a target point $T \in X$
- The tasks are:
 - COVER_n: Occupy as much of X as possible
 - SEARCH_n: Find T and move from S to T
 - NAV_n: Move from S to T
- We want an *efficient* algorithm solving the task.
 - offline if X is known
 - online if *X* is unknown

Our Three Tasks

- Given:
 - An environment $X \subset \mathbb{R}^n$ with finite diameter
 - A spherical robot, named Bob, of radius *r* > 0, equipped with:

- tactile sensor
- GPS sensor
- A starting point $S \in X$
- Possibly, a target point $T \in X$
- The tasks are:
 - COVER_n: Occupy as much of X as possible
 - SEARCH_n: Find T and move from S to T
 - NAV_n: Move from S to T
- We want an *efficient* algorithm solving the task.
 - offline if X is known
 - online if X is unknown

Why?

navigation problems

- mail delivery in a city
- moving packages in a factory
- configuration space problems
 - Shuttle arm motion
- exploration and sample acquisition
 - Mars Rover
- area coverage problems
 - cleaning public places
 - Roomba (video)

navigation problems

- mail delivery in a city
- moving packages in a factory
- configuration space problems
 - Shuttle arm motion
- exploration and sample acquisition
 - Mars Rover
- area coverage problems
 - cleaning public places
 - Roomba (video)

navigation problems

- mail delivery in a city
- moving packages in a factory
- configuration space problems
 - Shuttle arm motion
- exploration and sample acquisition
 - Mars Rover
- area coverage problems
 - cleaning public places
 - Roomba (video)

Why?

navigation problems

- mail delivery in a city
- moving packages in a factory

configuration space problems

- Shuttle arm motion
- exploration and sample acquisition
 - Mars Rover
- area coverage problems
 - cleaning public places
 - Roomba (video)

- mail delivery in a city
- moving packages in a factory
- configuration space problems
 - Shuttle arm motion
- exploration and sample acquisition
 - Mars Rover
- area coverage problems
 - cleaning public places
 - Roomba (video)

- mail delivery in a city
- moving packages in a factory
- configuration space problems
 - Shuttle arm motion
- exploration and sample acquisition
 - Mars Rover
- area coverage problems
 - cleaning public places
 - Roomba (video)

- mail delivery in a city
- moving packages in a factory
- configuration space problems
 - Shuttle arm motion
- exploration and sample acquisition
 - Mars Rover
- area coverage problems
 - cleaning public places
 - Roomba (video)

- mail delivery in a city
- moving packages in a factory
- configuration space problems
 - Shuttle arm motion
- exploration and sample acquisition
 - Mars Rover
- area coverage problems
 - cleaning public places
 - Roomba (video)

- mail delivery in a city
- moving packages in a factory
- configuration space problems
 - Shuttle arm motion
- exploration and sample acquisition
 - Mars Rover
- area coverage problems
 - cleaning public places
 - Roomba (video)

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

- mail delivery in a city
- moving packages in a factory
- configuration space problems
 - Shuttle arm motion
- exploration and sample acquisition
 - Mars Rover
- area coverage problems
 - cleaning public places
 - Roomba (video)

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Mathematical Motivation

• Discrete approximation via Rips complexes

Theorem (Caraballo)

Let *C* be a compact subset of \mathbb{R}^n . For any point $q \in \mathbb{R}^n$ and for almost every r > 0:

$Vol_{n-1}((d_C^{-1}(r)) \cap B^n(q,2r)) \le 4^{n+1}r^{n-1}.$

• Even if *C* is a fractal curve, most tubes about *C* have finite surface area.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Mathematical Motivation

• Discrete approximation via Rips complexes

Theorem (Caraballo)

Let C be a compact subset of \mathbb{R}^n . For any point $q \in \mathbb{R}^n$ and for almost every r > 0:

$Vol_{n-1}((d_C^{-1}(r)) \cap B^n(q, 2r)) \le 4^{n+1}r^{n-1}.$

• Even if *C* is a fractal curve, most tubes about *C* have finite surface area.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Mathematical Motivation

• Discrete approximation via Rips complexes

Theorem (Caraballo)

Let C be a compact subset of \mathbb{R}^n . For any point $q \in \mathbb{R}^n$ and for almost every r > 0:

$$Vol_{n-1}((d_C^{-1}(r)) \cap B^n(q,2r)) \le 4^{n+1}r^{n-1}.$$

• Even if *C* is a fractal curve, most tubes about *C* have finite surface area.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Mathematical Motivation

• Discrete approximation via Rips complexes

Theorem (Caraballo)

Let C be a compact subset of \mathbb{R}^n . For any point $q \in \mathbb{R}^n$ and for almost every r > 0:

$$Vol_{n-1}((d_C^{-1}(r)) \cap B^n(q,2r)) \le 4^{n+1}r^{n-1}.$$

• Even if *C* is a fractal curve, most tubes about *C* have finite surface area.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

BUG1 Competitiveness CBUG

The BUG1 algorithm

[Lumelsky and Stepanov]

BUG1

While not at T:

• Move directly towards T.

- If an obstacle is encountered:
 - Explore the obstacle (via clockwise circumnavigation).
 - *Move* to some point *p_{min}* on the obstacle closest to *T*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- If Bob cannot move directly towards *T* from *p_{min}*:
 - Target unreachable.

BUG1 Competitiveness CBUG

The BUG1 algorithm

[Lumelsky and Stepanov]

BUG1

While not at T:

- Move directly towards T.
- If an obstacle is encountered:
 - Explore the obstacle (via clockwise circumnavigation).
 - *Move* to some point p_{min} on the obstacle closest to T.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- If Bob cannot move directly towards T from p_{min} :
 - Target unreachable.

BUG1 Competitiveness CBUG

The BUG1 algorithm

[Lumelsky and Stepanov]

BUG1

While not at T:

- Move directly towards *T*.
- If an obstacle is encountered:
 - Explore the obstacle (via clockwise circumnavigation).
 - *Move* to some point p_{min} on the obstacle closest to T.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- If Bob cannot move directly towards *T* from *p_{min}*:
 - Target unreachable.

BUG1 Competitiveness CBUG

The BUG1 algorithm

[Lumelsky and Stepanov]

BUG1

While not at T:

- Move directly towards *T*.
- If an obstacle is encountered:
 - Explore the obstacle (via clockwise circumnavigation).
 - Move to some point p_{min} on the obstacle closest to T.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- If Bob cannot move directly towards *T* from *p_{min}*:
 - Target unreachable.

BUG1 Competitiveness CBUG

The BUG1 algorithm

[Lumelsky and Stepanov]

BUG1

While not at T:

- Move directly towards *T*.
- If an obstacle is encountered:
 - Explore the obstacle (via clockwise circumnavigation).
 - Move to some point p_{min} on the obstacle closest to T.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- If Bob cannot move directly towards *T* from *p_{min}*:
 - Target unreachable.

BUG1 Competitiveness CBUG

The BUG1 algorithm

[Lumelsky and Stepanov]

BUG1

While not at T:

- Move directly towards *T*.
- If an obstacle is encountered:
 - Explore the obstacle (via clockwise circumnavigation).
 - Move to some point p_{min} on the obstacle closest to T.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- If Bob cannot move directly towards *T* from *p_{min}*:
 - Target unreachable.

BUG1 Competitiveness CBUG

BUG1 Example

Josh Brown Kramer, Lucas Sabalka

Navigating Blindly
BUG1 Competitiveness CBUG

BUG1 Example

Josh Brown Kramer, Lucas Sabalka

BUG1 Competitiveness CBUG

BUG1 Example

Josh Brown Kramer, Lucas Sabalka

BUG1 Competitiveness CBUG

BUG1 Example

Josh Brown Kramer, Lucas Sabalka

BUG1 Competitiveness CBUG

BUG1 Example

Josh Brown Kramer, Lucas Sabalka

BUG1 Competitiveness CBUG

Definition of Competitiveness

- Given task P, like NAV_n
- For any algorithm A solving P, define

 $f_{A}(t) = \sup\{t_{A}(X) | t_{opt}(X) \leq t\}$

 g: ℝ → ℝ is a universal lower bound on competitiveness of P if for all A,

 $f_A \in \Omega(g)$

• A is O(g)-competitive if

 $f_A \in O(g)$

BUG1 Competitiveness CBUG

Definition of Competitiveness

- Given task P, like NAV_n
- For any algorithm A solving P, define

 $f_{A}(t) = \sup\{t_{A}(X) | t_{opt}(X) \leq t\}$

 g: ℝ → ℝ is a universal lower bound on competitiveness of P if for all A,

 $f_A \in \Omega(g)$

• A is O(g)-competitive if

 $f_A \in O(g)$

BUG1 Competitiveness CBUG

Definition of Competitiveness

- Given task P, like NAV_n
- For any algorithm A solving P, define

$$f_A(t) = \sup\{t_A(X) | t_{opt}(X) \leq t\}$$

 g : ℝ → ℝ is a universal lower bound on competitiveness of P if for all A,

 $f_A \in \Omega(g)$

• A is O(g)-competitive if

 $f_A \in O(g)$

BUG1 Competitiveness CBUG

Definition of Competitiveness

- Given task P, like NAV_n
- For any algorithm A solving P, define

$$f_A(t) = \sup\{t_A(X) | t_{opt}(X) \leq t\}$$

 g : ℝ → ℝ is a universal lower bound on competitiveness of P if for all A,

$$f_A \in \Omega(g)$$

• A is O(g)-competitive if

 $f_A \in O(g)$

BUG1 Competitiveness CBUG

Definition of Competitiveness

- Given task P, like NAV_n
- For any algorithm A solving P, define

$$f_A(t) = \sup\{t_A(X) | t_{opt}(X) \leq t\}$$

 g : ℝ → ℝ is a universal lower bound on competitiveness of P if for all A,

$$f_A \in \Omega(g)$$

• A is O(g)-competitive if

$$f_A \in O(g)$$

BUG1 Competitiveness CBUG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Competitiveness can be linear, quadratic, exponential, etc.
- A is linearly competitive iff $f_A(t) \in O(t)$ iff there exists c_1, c_0 with $t_A(t) \le c_1 t_{oot} + c_0$
- Example: Tree traversal.
 - Goal: visit each vertex of a tree and return to start.
 - Algorithm: Never go back across an edge until all neighboring edges have been traversed twice.

BUG1 Competitiveness CBUG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Competitiveness can be linear, quadratic, exponential, etc.
- A is linearly competitive iff $f_A(t) \in O(t)$ iff there exists c_1, c_0
 - with $t_A(t) \leq c_1 t_{opt} + c_0$
- Example: Tree traversal.
 - Goal: visit each vertex of a tree and return to start.
 - Algorithm: Never go back across an edge until all neighboring edges have been traversed twice.

BUG1 Competitiveness CBUG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Competitiveness can be linear, quadratic, exponential, etc.
- A is linearly competitive iff $f_A(t) \in O(t)$ iff there exists c_1, c_0 with $t_A(t) \le c_1 t_{opt} + c_0$
- Example: Tree traversal.
 - Goal: visit each vertex of a tree and return to start.
 - Algorithm: Never go back across an edge until all neighboring edges have been traversed twice.

BUG1 Competitiveness CBUG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Competitiveness can be linear, quadratic, exponential, etc.
- A is linearly competitive iff $f_A(t) \in O(t)$ iff there exists c_1, c_0 with $t_A(t) \leq c_1 t_{opt} + c_0$
- Example: Tree traversal.
 - Goal: visit each vertex of a tree and return to start.
 - Algorithm: Never go back across an edge until all neighboring edges have been traversed twice.

BUG1 Competitiveness CBUG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Competitiveness can be linear, quadratic, exponential, etc.
- A is linearly competitive iff $f_A(t) \in O(t)$ iff there exists c_1, c_0 with $t_A(t) \le c_1 t_{opt} + c_0$
- Example: Tree traversal.
 - Goal: visit each vertex of a tree and return to start.
 - Algorithm: Never go back across an edge until all neighboring edges have been traversed twice.

BUG1 Competitiveness CBUG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Competitiveness can be linear, quadratic, exponential, etc.
- A is linearly competitive iff $f_A(t) \in O(t)$ iff there exists c_1, c_0 with $t_A(t) \le c_1 t_{opt} + c_0$
- Example: Tree traversal.
 - Goal: visit each vertex of a tree and return to start.
 - Algorithm: Never go back across an edge until all neighboring edges have been traversed twice.

BUG1 Competitiveness CBUG

- Competitiveness can be linear, quadratic, exponential, etc.
- A is linearly competitive iff $f_A(t) \in O(t)$ iff there exists c_1, c_0 with $t_A(t) \le c_1 t_{opt} + c_0$
- Example: Tree traversal.
 - Goal: visit each vertex of a tree and return to start.
 - Algorithm: Never go back across an edge until all neighboring edges have been traversed twice.

BUG1 Competitiveness CBUG

Competitiveness

- Competitiveness can be linear, quadratic, exponential, etc.
- A is linearly competitive iff $f_A(t) \in O(t)$ iff there exists c_1, c_0 with $t_A(t) \le c_1 t_{opt} + c_0$
- Example: Tree traversal.
 - Goal: visit each vertex of a tree and return to start.
 - Algorithm: Never go back across an edge until all neighboring edges have been traversed twice.

BUG1 Competitiveness CBUG

- Competitiveness can be linear, quadratic, exponential, etc.
- A is linearly competitive iff $f_A(t) \in O(t)$ iff there exists c_1, c_0 with $t_A(t) \le c_1 t_{opt} + c_0$
- Example: Tree traversal.
 - Goal: visit each vertex of a tree and return to start.
 - Algorithm: Never go back across an edge until all neighboring edges have been traversed twice.

BUG1 Competitiveness CBUG

Competitiveness

- Competitiveness can be linear, quadratic, exponential, etc.
- A is linearly competitive iff $f_A(t) \in O(t)$ iff there exists c_1, c_0 with $t_A(t) \le c_1 t_{opt} + c_0$
- Example: Tree traversal.
 - Goal: visit each vertex of a tree and return to start.
 - Algorithm: Never go back across an edge until all neighboring edges have been traversed twice.

■▶ 三日 のへの

BUG1 Competitiveness CBUG

Competitiveness

- Competitiveness can be linear, quadratic, exponential, etc.
- A is linearly competitive iff $f_A(t) \in O(t)$ iff there exists c_1, c_0 with $t_A(t) \le c_1 t_{opt} + c_0$
- Example: Tree traversal.
 - Goal: visit each vertex of a tree and return to start.
 - Algorithm: Never go back across an edge until all neighboring edges have been traversed twice.
 - Must traverse each edge twice, and algorithm traverses each edge exactly twice, so optimally (linearly) competitive.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

BUG1 Competitiveness CBUG

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Competitiveness of BUG1

Competitiveness of BUG1?

• Horrible.

- Runs in time proportional to sum of lengths of boundaries of (intervening) obstacles.
- Is not O(g)-competitive for any function g.

BUG1 Competitiveness CBUG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Competitiveness of BUG1

Competitiveness of BUG1?

- Horrible.
- Runs in time proportional to sum of lengths of boundaries of (intervening) obstacles.
- Is not O(g)-competitive for any function g.

BUG1 Competitiveness CBUG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Competitiveness of BUG1

Competitiveness of BUG1?

- Horrible.
- Runs in time proportional to sum of lengths of boundaries of (intervening) obstacles.
- Is not O(g)-competitive for any function g.

BUG1 Competitiveness CBUG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Competitiveness of BUG1

Competitiveness of BUG1?

- Horrible.
- Runs in time proportional to sum of lengths of boundaries of (intervening) obstacles.
- Is not O(g)-competitive for any function g.

BUG1 Competitiveness CBUG

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

[Gabriely and Rimon]

CBUG

CBUG

```
Fix initial area A_0(\sim d(S, T)^2)
```

- **Execute** BUG1(*S*, *T*) within ellipse with foci *S* and *T* and area $2^i A_0$.
- Success if at T
- Failure if Bob did not touch virtual ellipse

BUG1 Competitiveness CBUG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

[Gabriely and Rimon]

CBUG

<u>CBUG</u>

Fix initial area $A_0(\sim d(S,T)^2)$

- Execute BUG1(S, T) within ellipse with foci S and T and area 2ⁱA₀.
- Success if at T
- Failure if Bob did not touch virtual ellipse

BUG1 Competitiveness CBUG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

[Gabriely and Rimon]

CBUG

CBUG

Fix initial area $A_0(\sim d(S,T)^2)$

- Execute BUG1(S, T) within ellipse with foci S and T and area 2ⁱA₀.
- Success if at T
- Failure if Bob did not touch virtual ellipse

BUG1 Competitiveness CBUG

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

[Gabriely and Rimon]

CBUG

CBUG

Fix initial area $A_0(\sim d(S,T)^2)$

- Execute BUG1(S, T) within ellipse with foci S and T and area 2ⁱA₀.
- Success if at T
- Failure if Bob did not touch virtual ellipse

BUG1 Competitiveness CBUG

CBUG Example

Josh Brown Kramer, Lucas Sabalka

BUG1 Competitiveness CBUG

CBUG Example

Josh Brown Kramer, Lucas Sabalka

BUG1 Competitiveness CBUG

CBUG Example

Josh Brown Kramer, Lucas Sabalka

BUG1 Competitiveness CBUG

Competitiveness of CBUG

(Show Program)

Geometric Progression.

Theorem (Gabriely and Rimon)

NAV₂ has a quadratic universal lower bound, namely given by

$$g_r(x) := \frac{2\pi}{3(1+\pi)^2 r} x^2 \sim \frac{.122x^2}{r}$$

Theorem (Gabriely and Rimon)

If T is reachable, CBUG solves NAV₂ in time at most

$$\frac{3\pi}{r}I_{opt}^2 + (function \ of \ X, r).$$

BUG1 Competitiveness CBUG

Competitiveness of CBUG

(Show Program) Geometric Progression.

Theorem (Gabriely and Rimon)

NAV₂ has a quadratic universal lower bound, namely given by

$$g_r(x) := \frac{2\pi}{3(1+\pi)^2 r} x^2 \sim \frac{.122x^2}{r}$$

Theorem (Gabriely and Rimon)

If T is reachable, CBUG solves NAV₂ in time at most

$$\frac{3\pi}{r}I_{opt}^2 + (function \ of \ X, r).$$

BUG1 Competitiveness CBUG

Competitiveness of CBUG

(Show Program) Geometric Progression.

Theorem (Gabriely and Rimon)

NAV2 has a quadratic universal lower bound, namely given by

$$g_r(x) := rac{2\pi}{3(1+\pi)^2 r} x^2 \sim rac{.122x^2}{r}$$

Theorem (Gabriely and Rimon)

If T is reachable, CBUG solves NAV₂ in time at most

 $\frac{3\pi}{r}I_{opt}^2 + (function \ of \ X, r).$

BUG1 Competitiveness CBUG

Competitiveness of CBUG

(Show Program) Geometric Progression.

Theorem (Gabriely and Rimon)

NAV2 has a quadratic universal lower bound, namely given by

$$g_r(x) := rac{2\pi}{3(1+\pi)^2 r} x^2 \sim rac{.122x^2}{r}$$

Theorem (Gabriely and Rimon)

If T is reachable, CBUG solves NAV₂ in time at most

$$\frac{3\pi}{r}l_{opt}^2 + (function of X, r).$$

BUG1 Competitiveness CBUG

Competitiveness of CBUG

(Show Program) Geometric Progression.

Theorem (Gabriely and Rimon)

NAV2 has a quadratic universal lower bound, namely given by

$$g_r(x) := rac{2\pi}{3(1+\pi)^2 r} x^2 \sim rac{.122x^2}{r}$$

Theorem (Gabriely and Rimon)

If T is reachable, CBUG solves NAV₂ in time at most

$$\frac{3\pi}{r}I_{opt}^2 + (function of X, r).$$
Fixing Negative Results Solving SEARCH_n and NAV_n

Bad News 1

- Proof of second theorem has a flaw....
 - Let A = area covered. Gabriely and Rimon assume length of path traversed is at most $\frac{A}{2r}$.
 - Analogue not true for higher dimensions (ex: 3-D r-neighborhood of planar space-filling curve)
- Partial fix comes from Caraballo's Theorem.

Theorem

- Similar results in higher dimensions
- Open question: reasonable result for real environments?

Fixing Negative Results Solving SEARCH_n and NAV_n

Bad News 1

- Proof of second theorem has a flaw....
 - Let A = area covered. Gabriely and Rimon assume length of path traversed is at most $\frac{A}{2r}$.
 - Analogue not true for higher dimensions (ex: 3-D *r*-neighborhood of planar space-filling curve)
- Partial fix comes from Caraballo's Theorem.

Theorem

- Similar results in higher dimensions
- Open question: reasonable result for real environments?

Fixing Negative Results

くロ とく聞 とくほ とくほん

Bad News 1

- Proof of second theorem has a flaw....
 - Let A = area covered. Gabriely and Rimon assume length of path traversed is at most $\frac{A}{2r}$.
 - Analogue not true for higher dimensions (ex: 3-D r-neighborhood of planar space-filling curve)

Partial fix comes from Caraballo's Theorem.

- Similar results in higher dimensions
- 31= 990

Fixing Negative Results Solving SEARCH_n and NAV_n

Bad News 1

- Proof of second theorem has a flaw....
 - Let A = area covered. Gabriely and Rimon assume length of path traversed is at most $\frac{A}{2r}$.
 - Analogue not true for higher dimensions (ex: 3-D *r*-neighborhood of planar space-filling curve)
- Partial fix comes from Caraballo's Theorem.

Theorem

- Similar results in higher dimensions
- Open question: reasonable result for real environments?

Fixing Negative Results Solving SEARCH_n and NAV_n

Bad News 1

- Proof of second theorem has a flaw....
 - Let A = area covered. Gabriely and Rimon assume length of path traversed is at most $\frac{A}{2r}$.
 - Analogue not true for higher dimensions (ex: 3-D r-neighborhood of planar space-filling curve)
- Partial fix comes from Caraballo's Theorem.

Theorem

- Similar results in higher dimensions
- Open question: reasonable result for real environments?

Fixing Negative Results Solving SEARCH_n and NAV_n

ELE DQC

Bad News 1

- Proof of second theorem has a flaw....
 - Let A = area covered. Gabriely and Rimon assume length of path traversed is at most $\frac{A}{2r}$.
 - Analogue not true for higher dimensions (ex: 3-D r-neighborhood of planar space-filling curve)
- Partial fix comes from Caraballo's Theorem.

Theorem

- Similar results in higher dimensions
- Open question: reasonable result for real environments?

Fixing Negative Results Solving SEARCH_n and NAV_n

= 200

Bad News 1

- Proof of second theorem has a flaw....
 - Let A = area covered. Gabriely and Rimon assume length of path traversed is at most $\frac{A}{2r}$.
 - Analogue not true for higher dimensions (ex: 3-D *r*-neighborhood of planar space-filling curve)
- Partial fix comes from Caraballo's Theorem.

Theorem

- Similar results in higher dimensions
- Open question: reasonable result for real environments?

Fixing Negative Results Solving SEARCH_n and NAV_n

Bad News 2

 COVER_n doesn't make sense for n > 2. Neither does an 'efficient' algorithm for NAV_n or SEARCH_n:

Theorem (BKS)

If $n \ge 3$, then every algorithm that solves either NAV_n or SEARCH_n is not O(f)-competitive for any $f : \mathbb{R} \to \mathbb{R}$.

- Proof via 'parallel corridors' examples:
 - idea: pack as many corridors into as small a volume as possible, so Bob has to potentially explore every one of them.
 - Can pack arbitrarily many corridors into finite volume for $n \ge 3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Fixing Negative Results Solving SEARCH_n and NAV_n

Bad News 2

• *COVER_n* doesn't make sense for *n* > 2. Neither does an 'efficient' algorithm for *NAV_n* or *SEARCH_n*:

Theorem (BKS)

If $n \ge 3$, then every algorithm that solves either NAV_n or SEARCH_n is not O(f)-competitive for any $f : \mathbb{R} \to \mathbb{R}$.

- Proof via 'parallel corridors' examples:
 - idea: pack as many corridors into as small a volume as possible, so Bob has to potentially explore every one of them.
 - Can pack arbitrarily many corridors into finite volume for $n \ge 3$

Fixing Negative Results Solving SEARCH_n and NAV_n

Bad News 2

• *COVER_n* doesn't make sense for *n* > 2. Neither does an 'efficient' algorithm for *NAV_n* or *SEARCH_n*:

Theorem (BKS)

If $n \ge 3$, then every algorithm that solves either NAV_n or SEARCH_n is not O(f)-competitive for any $f : \mathbb{R} \to \mathbb{R}$.

- Proof via 'parallel corridors' examples:
 - idea: pack as many corridors into as small a volume as possible, so Bob has to potentially explore every one of them.
 - Can pack arbitrarily many corridors into finite volume for $n \ge 3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Fixing Negative Results Solving SEARCH_n and NAV_n

Bad News 2

• *COVER_n* doesn't make sense for n > 2. Neither does an 'efficient' algorithm for *NAV_n* or *SEARCH_n*:

Theorem (BKS)

If $n \ge 3$, then every algorithm that solves either NAV_n or SEARCH_n is not O(f)-competitive for any $f : \mathbb{R} \to \mathbb{R}$.

- Proof via 'parallel corridors' examples:
 - idea: pack as many corridors into as small a volume as possible, so Bob has to potentially explore every one of them.
 - Can pack arbitrarily many corridors into finite volume for $n \ge 3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Fixing Negative Results Solving SEARCH_n and NAV_n

Bad News 2

• *COVER_n* doesn't make sense for n > 2. Neither does an 'efficient' algorithm for *NAV_n* or *SEARCH_n*:

Theorem (BKS)

If $n \ge 3$, then every algorithm that solves either NAV_n or SEARCH_n is not O(f)-competitive for any $f : \mathbb{R} \to \mathbb{R}$.

- Proof via 'parallel corridors' examples:
 - idea: pack as many corridors into as small a volume as possible, so Bob has to potentially explore every one of them.
 - Can pack arbitrarily many corridors into finite volume for $n \ge 3$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Fixing Negative Results Solving SEARCH_n and NAV_n

Parallel Corridors in 2-D

Fixing Negative Results Solving SEARCH_n and NAV_n

Parallel Corridors in 3-D

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Fixing Negative Results Solving SEARCH_n and NAV_n

Parallel Corridors in 3-D

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Fixing Negative Results Solving SEARCH_n and NAV_n

Parallel Corridors in 3-D

Fixing Negative Results Solving SEARCH_n and NAV_n

Parallel Corridors in 3-D

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Fixing Negative Results Solving SEARCH_n and NAV_n

Parallel Corridors in 3-D

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Fixing Negative Results Solving SEARCH_n and NAV_n

Parallel Corridors in 3-D

Josh Brown Kramer, Lucas Sabalka

Navigating Blindly

Fixing Negative Results Solving SEARCH_n and NAV_n

The Fix: Clearance Parameter

- Weaken tasks slightly by adding a *clearance parameter*, *ϵ* > 0.
- Introduction of ε allows us, for instance, to ignore parallel corridor spaces where the corridors are packed too tightly.
- For a fixed ϵ , define

$$\kappa = 2\sqrt{2r\epsilon + \epsilon^2}$$

and

$$r' = r + \epsilon.$$

If a robot of radius r' can occupy two points A and B of X, and d(A, B) < κ, then Bob can move freely along the straight line from A to B.

Fixing Negative Results Solving SEARCH_n and NAV_n

The Fix: Clearance Parameter

- Weaken tasks slightly by adding a *clearance parameter*, *ϵ* > 0.
- Introduction of ε allows us, for instance, to ignore parallel corridor spaces where the corridors are packed too tightly.
- For a fixed ϵ , define

$$\kappa = 2\sqrt{2r\epsilon + \epsilon^2}$$

and

$$r' = r + \epsilon.$$

If a robot of radius r' can occupy two points A and B of X, and d(A, B) < κ, then Bob can move freely along the straight line from A to B.

Fixing Negative Results Solving SEARCH_n and NAV_n

The Fix: Clearance Parameter

- Weaken tasks slightly by adding a *clearance parameter*, *ϵ* > 0.
- Introduction of
 e allows us, for instance, to ignore parallel corridor spaces where the corridors are packed too tightly.
- For a fixed ϵ , define

$$\kappa = 2\sqrt{2r\epsilon + \epsilon^2}$$

and

$$r'=r+\epsilon$$
.

If a robot of radius r' can occupy two points A and B of X, and d(A, B) < κ, then Bob can move freely along the straight line from A to B.

The Fix: Clearance Parameter

- Weaken tasks slightly by adding a *clearance parameter*, *ϵ* > 0.
- Introduction of
 e allows us, for instance, to ignore parallel corridor spaces where the corridors are packed too tightly.
- For a fixed ϵ , define

$$\kappa = 2\sqrt{2r\epsilon + \epsilon^2}$$

and

$$r' = r + \epsilon.$$

 If a robot of radius r' can occupy two points A and B of X, and d(A, B) < κ, then Bob can move freely along the straight line from A to B.

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Modifying the Tasks

Definition

The modified NAV_n and SEARCH_n problems are to reach T if there is an r'-path from S to T, and otherwise reach T or determine no r'-path exists.

Definition

The *modified COVER*ⁿ problem is to come within r' of every point within r of an r'-path from S.

• Competitiveness should be measured against the optimal *r*'-path.

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Modifying the Tasks

Definition

The modified NAV_n and SEARCH_n problems are to reach T if there is an r'-path from S to T, and otherwise reach T or determine no r'-path exists.

Definition

The modified $COVER_n$ problem is to come within r' of every point within r of an r'-path from S.

• Competitiveness should be measured against the optimal *r*'-path.

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Modifying the Tasks

Definition

The modified NAV_n and SEARCH_n problems are to reach T if there is an r'-path from S to T, and otherwise reach T or determine no r'-path exists.

Definition

The *modified COVER*_n problem is to come within r' of every point within r of an r'-path from S.

• Competitiveness should be measured against the optimal *r*'-path.

Fixing Negative Results Solving SEARCH_n and NAV_n

Universal Lower Bound

Linear universal lower bound for COVER_n.

Theorem (BKS)

 NAV_n and $SEARCH_n$ have a universal lower bound on competitiveness given by

$$\frac{I_{opt}^{n}}{\kappa^{n-2}r'}.$$

- Proof: Analyze parallel corridor spaces (lots of details to check)
- With minor constraints, runtime is at least

$$\frac{l_{opt}^n}{2^{n+2}(1+\sqrt{n-1})^n\kappa^{n-2}r'}.$$

Fixing Negative Results Solving SEARCH_n and NAV_n

Universal Lower Bound

Linear universal lower bound for COVER_n.

Theorem (BKS)

 NAV_n and $SEARCH_n$ have a universal lower bound on competitiveness given by

$$\frac{I_{opt}^n}{\kappa^{n-2}r'}.$$

- Proof: Analyze parallel corridor spaces (lots of details to check)
- With minor constraints, runtime is at least

$$\frac{l_{opt}^{n}}{2^{n+2}(1+\sqrt{n-1})^{n}\kappa^{n-2}r'}.$$

Fixing Negative Results Solving SEARCH_n and NAV_n

Universal Lower Bound

Linear universal lower bound for COVER_n.

Theorem (BKS)

 NAV_n and $SEARCH_n$ have a universal lower bound on competitiveness given by

$$\frac{I_{opt}^n}{\kappa^{n-2}r'}$$

Proof: Analyze parallel corridor spaces (lots of details to check)

• With minor constraints, runtime is at least

$$\frac{l_{opt}^{n}}{2^{n+2}(1+\sqrt{n-1})^{n}\kappa^{n-2}r'}.$$

Fixing Negative Results Solving SEARCH_n and NAV_n

Universal Lower Bound

Linear universal lower bound for COVER_n.

Theorem (BKS)

 NAV_n and $SEARCH_n$ have a universal lower bound on competitiveness given by

$$\frac{I_{opt}^n}{\kappa^{n-2}r'}$$

- Proof: Analyze parallel corridor spaces (lots of details to check)
- With minor constraints, runtime is at least

$$\frac{l_{opt}^{n}}{2^{n+2}(1+\sqrt{n-1})^{n}\kappa^{n-2}r'}.$$

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

How to Explore Obstacles

Cannot explore obstacles by touching every point

- Remember explored obstacle points
- Key observations: Only need sufficiently fine mesh of obstacle points: 2 obstacle points of distance less than 2*r* apart prevent Bob from passing between them
- Approximate obstacles by shadow of appropriate Rips complex of sufficiently fine sampling.
- For convenience, we sample via a cubical lattice

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Cannot explore obstacles by touching every point
- Remember explored obstacle points
- Key observations: Only need sufficiently fine mesh of obstacle points: 2 obstacle points of distance less than 2*r* apart prevent Bob from passing between them
- Approximate obstacles by shadow of appropriate Rips complex of sufficiently fine sampling.
- For convenience, we sample via a cubical lattice

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Cannot explore obstacles by touching every point
- Remember explored obstacle points
- Key observations: Only need sufficiently fine mesh of obstacle points: 2 obstacle points of distance less than 2*r* apart prevent Bob from passing between them
- Approximate obstacles by shadow of appropriate Rips complex of sufficiently fine sampling.
- For convenience, we sample via a cubical lattice

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Cannot explore obstacles by touching every point
- Remember explored obstacle points
- Key observations: Only need sufficiently fine mesh of obstacle points: 2 obstacle points of distance less than 2r apart prevent Bob from passing between them
- Approximate obstacles by shadow of appropriate Rips complex of sufficiently fine sampling.
- For convenience, we sample via a cubical lattice

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Cannot explore obstacles by touching every point
- Remember explored obstacle points
- Key observations: Only need sufficiently fine mesh of obstacle points: 2 obstacle points of distance less than 2r apart prevent Bob from passing between them
- Approximate obstacles by shadow of appropriate Rips complex of sufficiently fine sampling.
- For convenience, we sample via a cubical lattice

Fixing Negative Results Solving SEARCH_n and NAV_n

Approximating Obstacles

Josh Brown Kramer, Lucas Sabalka

Navigating Blindly
Fixing Negative Results Solving SEARCH_n and NAV_n

Approximating Obstacles

Josh Brown Kramer, Lucas Sabalka

Navigating Blindly

▶ Ξ = • • • • •

3

Fixing Negative Results Solving SEARCH_n and NAV_n

Approximating Obstacles

Josh Brown Kramer, Lucas Sabalka

Navigating Blindly

Fixing Negative Results Solving SEARCH_n and NAV_n

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Colors

• White: Unexplored;

- Yellow: Bob's center can be at the center of the cube;
- Red: Too close to an obstacle: the center of a robot of radius r + ε cannot be anywhere in the cube;
- Pink: outside of the virtual boundary.

Fixing Negative Results Solving SEARCH_n and NAV_n

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Colors

- White: Unexplored;
- Yellow: Bob's center can be at the center of the cube;
- Red: Too close to an obstacle: the center of a robot of radius r + ε cannot be anywhere in the cube;
- Pink: outside of the virtual boundary.

Fixing Negative Results Solving SEARCH_n and NAV_n

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Colors

- White: Unexplored;
- Yellow: Bob's center can be at the center of the cube;
- Red: Too close to an obstacle: the center of a robot of radius r + ε cannot be anywhere in the cube;
- Pink: outside of the virtual boundary.

Fixing Negative Results Solving SEARCH_n and NAV_n

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Colors

- White: Unexplored;
- Yellow: Bob's center can be at the center of the cube;
- Red: Too close to an obstacle: the center of a robot of radius r + ε cannot be anywhere in the cube;
- Pink: outside of the virtual boundary.

Fixing Negative Results Solving SEARCH_n and NAV_n

= 990

ロト (部) (モト (ヨ)

Solving NAV_n: Boxes

Boxes_e

- Break X into a grid of axis-parallel cubes of side length $I = \min{\{\epsilon/2, \epsilon/\sqrt{n}\}}$. Color all cubes White.
- Move from *S* to the center of the current cube, *C*. Stop if an obstacle is found.
- Define $a_0 = d(S, T') + I$, and set $a = a_0$.
- While not in the same cube as T
 - Color cubes outside $\{p: d(S, p) + d(p, T) \le a\}$ Pink.
 - Explore *X* using GraphTraverse(*C*).
 - If no neighbor of a Pink cube is explored, stop.
 - If S is surrounded by points within Red cubes, stop.
 - Double *a* and color all Pink cubes White.
- Travel towards *T*. If an obstacle is encountered, stop.

Fixing Negative Results Solving SEARCH_n and NAV_n

= 990

ロト (部) (モト (ヨ)

Solving NAV_n: Boxes

Boxes_e

- Break X into a grid of axis-parallel cubes of side length $l = \min{\{\epsilon/2, \epsilon/\sqrt{n}\}}$. Color all cubes White.
- Move from *S* to the center of the current cube, *C*. Stop if an obstacle is found.
- Define $a_0 = d(S, T') + I$, and set $a = a_0$.
- While not in the same cube as T
 - Color cubes outside $\{p: d(S, p) + d(p, T) \le a\}$ Pink.
 - Explore X using GraphTraverse(C).
 - If no neighbor of a Pink cube is explored, stop.
 - If S is surrounded by points within Red cubes, stop.
 - Double *a* and color all Pink cubes White.
- Travel towards *T*. If an obstacle is encountered, stop.

Fixing Negative Results Solving SEARCH_n and NAV_n

= 990

ロト (部) (モト (ヨ)

Solving NAV_n: Boxes

$Boxes_{\epsilon}$

- Break X into a grid of axis-parallel cubes of side length $l = \min{\{\epsilon/2, \epsilon/\sqrt{n}\}}$. Color all cubes White.
- Move from *S* to the center of the current cube, *C*. Stop if an obstacle is found.
- Define $a_0 = d(S, T') + I$, and set $a = a_0$.
- While not in the same cube as T
 - Color cubes outside $\{p: d(S, p) + d(p, T) \le a\}$ Pink.
 - Explore X using GraphTraverse(C).
 - If no neighbor of a Pink cube is explored, stop.
 - If S is surrounded by points within Red cubes, stop.
 - Double *a* and color all Pink cubes White.

• Travel towards *T*. If an obstacle is encountered, stop.

Fixing Negative Results Solving SEARCH_n and NAV_n

= 990

Solving NAV_n: Boxes

$Boxes_{\epsilon}$

- Break X into a grid of axis-parallel cubes of side length $l = \min{\{\epsilon/2, \epsilon/\sqrt{n}\}}$. Color all cubes White.
- Move from *S* to the center of the current cube, *C*. Stop if an obstacle is found.
- Define $a_0 = d(S, T') + I$, and set $a = a_0$.
- While not in the same cube as T
 - Color cubes outside $\{p: d(S, p) + d(p, T) \le a\}$ Pink.
 - Explore *X* using GraphTraverse(*C*).
 - If no neighbor of a Pink cube is explored, stop.
 - If S is surrounded by points within Red cubes, stop.
 - Double *a* and color all Pink cubes White.
- Travel towards *T*. If an obstacle is encountered, stop.

Fixing Negative Results Solving SEARCH_n and NAV_n

= 990

ロト (部) (종) (종)

Solving NAV_n: Boxes

Boxes_e

- Break X into a grid of axis-parallel cubes of side length $l = \min{\{\epsilon/2, \epsilon/\sqrt{n}\}}$. Color all cubes White.
- Move from *S* to the center of the current cube, *C*. Stop if an obstacle is found.
- Define $a_0 = d(S, T') + I$, and set $a = a_0$.
- While not in the same cube as T
 - Color cubes outside $\{p: d(S, p) + d(p, T) \le a\}$ Pink.
 - Explore X using GraphTraverse(C).
 - If no neighbor of a Pink cube is explored, stop.
 - If *S* is surrounded by points within Red cubes, stop.
 - Double *a* and color all Pink cubes White.
- Travel towards *T*. If an obstacle is encountered, stop.

Fixing Negative Results Solving SEARCH_n and NAV_n

= 990

▶ < □ ▶ < □ ▶ <</p>

Solving NAV_n: Boxes

Boxes_e

- Break X into a grid of axis-parallel cubes of side length $l = \min{\{\epsilon/2, \epsilon/\sqrt{n}\}}$. Color all cubes White.
- Move from *S* to the center of the current cube, *C*. Stop if an obstacle is found.
- Define $a_0 = d(S, T') + I$, and set $a = a_0$.
- While not in the same cube as T
 - Color cubes outside $\{p: d(S, p) + d(p, T) \le a\}$ Pink.
 - Explore X using GraphTraverse(C).
 - If no neighbor of a Pink cube is explored, stop.
 - If *S* is surrounded by points within Red cubes, stop.
 - Double *a* and color all Pink cubes White.

• Travel towards T. If an obstacle is encountered, stop.

Fixing Negative Results Solving SEARCH_n and NAV_n

= 990

Solving NAV_n: Boxes

$Boxes_{\epsilon}$

- Break X into a grid of axis-parallel cubes of side length $l = \min{\{\epsilon/2, \epsilon/\sqrt{n}\}}$. Color all cubes White.
- Move from *S* to the center of the current cube, *C*. Stop if an obstacle is found.
- Define $a_0 = d(S, T') + I$, and set $a = a_0$.
- While not in the same cube as T
 - Color cubes outside $\{p: d(S, p) + d(p, T) \le a\}$ Pink.
 - Explore X using GraphTraverse(C).
 - If no neighbor of a Pink cube is explored, stop.
 - If *S* is surrounded by points within Red cubes, stop.
 - Double *a* and color all Pink cubes White.

• Travel towards *T*. If an obstacle is encountered, stop.

Fixing Negative Results Solving SEARCH_n and NAV_n

Solving NAV_n: Boxes

$Boxes_{\epsilon}$

- Break X into a grid of axis-parallel cubes of side length $l = \min{\{\epsilon/2, \epsilon/\sqrt{n}\}}$. Color all cubes White.
- Move from *S* to the center of the current cube, *C*. Stop if an obstacle is found.
- Define $a_0 = d(S, T') + I$, and set $a = a_0$.
- While not in the same cube as T
 - Color cubes outside $\{p: d(S, p) + d(p, T) \le a\}$ Pink.
 - Explore X using GraphTraverse(C).
 - If no neighbor of a Pink cube is explored, stop.
 - If *S* is surrounded by points within Red cubes, stop.
 - Double *a* and color all Pink cubes White.
- Travel towards *T*. If an obstacle is encountered, stop.

Fixing Negative Results Solving SEARCH_n and NAV_n

GraphTraverse

GraphTraverse(C)

- If $T \in C$ Return.
- Set *Adjacent* = {cubes sharing (n 1)-face with *C*}.
- While there are White cubes in Adjacent,
 - Pick White $D \in Adjacent$.
 - Move in a straight line toward the center of D.
 - If obstacle is hit, color *D* red and return to center of *C*.
 - Else
 - Color D Yellow
 - GraphTraverse(*D*,*T*).
 - If *T* is in the current cube, Return.
 - Travel back to the center of C.
- Return

(本語) を ほ と (ほ)

Fixing Negative Results Solving SEARCH_n and NAV_n

GraphTraverse

GraphTraverse(C)

- If $T \in C$ Return.
- Set *Adjacent* = {cubes sharing (n 1)-face with *C*}.
- While there are White cubes in Adjacent,
 - Pick White $D \in Adjacent$.
 - Move in a straight line toward the center of D.
 - If obstacle is hit, color *D* red and return to center of *C*.
 Else
 - Color D Yellow
 - GraphTraverse(*D*,*T*).
 - If *T* is in the current cube, Return.
 - Travel back to the center of C.
- Return

(本語) を ほ と (ほ)

Fixing Negative Results Solving SEARCH_n and NAV_n

GraphTraverse

GraphTraverse(C)

- If $T \in C$ Return.
- Set *Adjacent* = {cubes sharing (n 1)-face with *C*}.
- While there are White cubes in Adjacent,
 - Pick White $D \in Adjacent$.
 - Move in a straight line toward the center of D.
 - If obstacle is hit, color D red and return to center of C.
 - Else
 - Color D Yellow
 - GraphTraverse(*D*,*T*).
 - If *T* is in the current cube, Return.
 - Travel back to the center of C.
- Return

▲ □ ▼ ▲ □ ▼ ▲ □ ▼

Fixing Negative Results Solving SEARCH_n and NAV_n

GraphTraverse

GraphTraverse(C)

- If $T \in C$ Return.
- Set *Adjacent* = {cubes sharing (n 1)-face with *C*}.
- While there are White cubes in Adjacent,
 - Pick White $D \in Adjacent$.
 - Move in a straight line toward the center of D.
 - If obstacle is hit, color D red and return to center of C.
 - Else
 - Color D Yellow
 - GraphTraverse(D,T).
 - If *T* is in the current cube, Return.
 - Travel back to the center of C.

Return

▲国 > ▲ 田 > ▲ 田 >

Fixing Negative Results Solving SEARCH_n and NAV_n

<国マ (目) (日)

GraphTraverse

GraphTraverse(C)

- If $T \in C$ Return.
- Set *Adjacent* = {cubes sharing (n 1)-face with *C*}.
- While there are White cubes in Adjacent,
 - Pick White $D \in Adjacent$.
 - Move in a straight line toward the center of D.
 - If obstacle is hit, color D red and return to center of C.
 - Else
 - Color D Yellow
 - GraphTraverse(D,T).
 - If *T* is in the current cube, Return.
 - Travel back to the center of C.
- Return

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Analysis of Boxes

Theorem (BKS)

If there is an $(r + \epsilon)$ -path, p, from S to T, then $Boxes_{\epsilon}$ will move Bob from S to T.

- points in a cube are at most ϵ apart
- If the center of a robot of radius *r*' can be SOMEWHERE in a cube, Bob can be ANYWHERE
- Reduces problem to finite graph exploration: stick to 1-skeleton of dual
- GraphTraverse is essentially depth-first search

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Analysis of Boxes

Theorem (BKS)

If there is an $(r + \epsilon)$ -path, p, from S to T, then $Boxes_{\epsilon}$ will move Bob from S to T.

- points in a cube are at most ϵ apart
- If the center of a robot of radius r' can be SOMEWHERE in a cube, Bob can be ANYWHERE
- Reduces problem to finite graph exploration: stick to 1-skeleton of dual
- GraphTraverse is essentially depth-first search

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Analysis of Boxes

Theorem (BKS)

If there is an $(r + \epsilon)$ -path, p, from S to T, then $Boxes_{\epsilon}$ will move Bob from S to T.

- points in a cube are at most ϵ apart
- If the center of a robot of radius r' can be SOMEWHERE in a cube, Bob can be ANYWHERE
- Reduces problem to finite graph exploration: stick to 1-skeleton of dual
- GraphTraverse is essentially depth-first search

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Analysis of Boxes

Theorem (BKS)

If there is an $(r + \epsilon)$ -path, p, from S to T, then $Boxes_{\epsilon}$ will move Bob from S to T.

- points in a cube are at most ϵ apart
- If the center of a robot of radius r' can be SOMEWHERE in a cube, Bob can be ANYWHERE
- Reduces problem to finite graph exploration: stick to 1-skeleton of dual
- GraphTraverse is essentially depth-first search

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Analysis of Boxes

Theorem (BKS)

If there is an $(r + \epsilon)$ -path, p, from S to T, then $Boxes_{\epsilon}$ will move Bob from S to T.

- points in a cube are at most ϵ apart
- If the center of a robot of radius r' can be SOMEWHERE in a cube, Bob can be ANYWHERE
- Reduces problem to finite graph exploration: stick to 1-skeleton of dual
- GraphTraverse is essentially depth-first search

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

Analysis of Boxes

Theorem (BKS)

In spaces without bottlenecks, the length of the path generated by $Boxes_{\epsilon}$ is at most $c_n(I_{opt})^n (\frac{1}{\epsilon})^{n-1} + \frac{d_n}{\epsilon} + \epsilon$ for some constants c_n , d_n depending only on n.

- Sketch of Proof: tree traversal
- Compare to universal lower bound of

$$\frac{l_{opt}^{n}}{\kappa^{n-2}r'} \sim \frac{l_{opt}^{n}}{\epsilon^{\frac{n-2}{2}}r'}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

for small ϵ (recall $\kappa = 2\sqrt{2r\epsilon + \epsilon^2}$).

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

Analysis of Boxes

Theorem (BKS)

In spaces without bottlenecks, the length of the path generated by $Boxes_{\epsilon}$ is at most $c_n(I_{opt})^n (\frac{1}{\epsilon})^{n-1} + \frac{d_n}{\epsilon} + \epsilon$ for some constants c_n , d_n depending only on n.

Sketch of Proof: tree traversal

Compare to universal lower bound of

$$\frac{I_{opt}^{n}}{\kappa^{n-2}r'} \sim \frac{I_{opt}^{n}}{\epsilon^{\frac{n-2}{2}}r'}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

for small ϵ (recall $\kappa = 2\sqrt{2r\epsilon + \epsilon^2}$).

Fixing Negative Results Solving SEARCH_n and NAV_n

Analysis of Boxes

Theorem (BKS)

In spaces without bottlenecks, the length of the path generated by $Boxes_{\epsilon}$ is at most $c_n(I_{opt})^n (\frac{1}{\epsilon})^{n-1} + \frac{d_n}{\epsilon} + \epsilon$ for some constants c_n , d_n depending only on n.

- Sketch of Proof: tree traversal
- Compare to universal lower bound of

$$\frac{I_{opt}^{n}}{\varepsilon^{n-2}r'} \sim \frac{I_{opt}^{n}}{\epsilon^{\frac{n-2}{2}}r'}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

for small ϵ (recall $\kappa = 2\sqrt{2r\epsilon + \epsilon^2}$).

Fixing Negative Results Solving SEARCH_n and NAV_n

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Solving COVER

Theorem (BKS)

The algorithm CBoxes solves the modified COVER_n problem and is optimally competitive with an upper bound on competitiveness given by $cl_{opt} + d$, where c and d are constants depending on r, n, and ϵ .

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Improvements

- Sampling Improvement by using better lattice
- Taking Diagonals Improvement
- Noticing *T* Improvement to treat *SEARCH* like *NAV*
- Maximal Coloring Improvement
- Disregarding Dead Ends Improvement
- Greedy Improvement
- Subdivision Improvement

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Improvements

- Sampling Improvement by using better lattice
- Taking Diagonals Improvement
- Noticing *T* Improvement to treat *SEARCH* like *NAV*
- Maximal Coloring Improvement
- Disregarding Dead Ends Improvement
- Greedy Improvement
- Subdivision Improvement

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Improvements

- Sampling Improvement by using better lattice
- Taking Diagonals Improvement
- Noticing *T* Improvement to treat *SEARCH* like *NAV*
- Maximal Coloring Improvement
- Disregarding Dead Ends Improvement
- Greedy Improvement
- Subdivision Improvement

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Improvements

- Sampling Improvement by using better lattice
- Taking Diagonals Improvement
- Noticing *T* Improvement to treat *SEARCH* like *NAV*
- Maximal Coloring Improvement
- Disregarding Dead Ends Improvement
- Greedy Improvement
- Subdivision Improvement

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Improvements

- Sampling Improvement by using better lattice
- Taking Diagonals Improvement
- Noticing *T* Improvement to treat *SEARCH* like *NAV*
- Maximal Coloring Improvement
- Disregarding Dead Ends Improvement
- Greedy Improvement
- Subdivision Improvement

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Improvements

- Sampling Improvement by using better lattice
- Taking Diagonals Improvement
- Noticing *T* Improvement to treat *SEARCH* like *NAV*
- Maximal Coloring Improvement
- Disregarding Dead Ends Improvement
- Greedy Improvement
- Subdivision Improvement

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Improvements

- Sampling Improvement by using better lattice
- Taking Diagonals Improvement
- Noticing *T* Improvement to treat *SEARCH* like *NAV*
- Maximal Coloring Improvement
- Disregarding Dead Ends Improvement
- Greedy Improvement
- Subdivision Improvement

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

Example of Boxes (improved)

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

Example of Boxes (improved)

Fixing Negative Results Solving *SEARCH_n* and *NAV_n*

Example of Boxes (improved)

Fixing Negative Results Solving SEARCH_n and NAV_n

Example of Boxes (improved)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Fixing Negative Results Solving SEARCH_n and NAV_n

Example of Boxes (improved)

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Future Directions

• Improve Boxes to be optimally competitive.

- Calculate average-case complexity with improvements in certain environments
- Analyze case if *T* is unreachable 'discompetitive analysis'.
- Program implementation.
- Non-spherical robots, other coordinate systems (tori).
- Consider various applications (arm linkages, Roomba).
- Apply to coordinate-free search and exploration problems (Mars rover).

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Improve Boxes to be optimally competitive.
- Calculate average-case complexity with improvements in certain environments
- Analyze case if *T* is unreachable 'discompetitive analysis'.
- Program implementation.
- Non-spherical robots, other coordinate systems (tori).
- Consider various applications (arm linkages, Roomba).
- Apply to coordinate-free search and exploration problems (Mars rover).

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Improve Boxes to be optimally competitive.
- Calculate average-case complexity with improvements in certain environments
- Analyze case if *T* is unreachable 'discompetitive analysis'.
- Program implementation.
- Non-spherical robots, other coordinate systems (tori).
- Consider various applications (arm linkages, Roomba).
- Apply to coordinate-free search and exploration problems (Mars rover).

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Improve Boxes to be optimally competitive.
- Calculate average-case complexity with improvements in certain environments
- Analyze case if *T* is unreachable 'discompetitive analysis'.
- Program implementation.
- Non-spherical robots, other coordinate systems (tori).
- Consider various applications (arm linkages, Roomba).
- Apply to coordinate-free search and exploration problems (Mars rover).

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Improve Boxes to be optimally competitive.
- Calculate average-case complexity with improvements in certain environments
- Analyze case if *T* is unreachable 'discompetitive analysis'.
- Program implementation.
- Non-spherical robots, other coordinate systems (tori).
- Consider various applications (arm linkages, Roomba).
- Apply to coordinate-free search and exploration problems (Mars rover).

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Improve Boxes to be optimally competitive.
- Calculate average-case complexity with improvements in certain environments
- Analyze case if *T* is unreachable 'discompetitive analysis'.
- Program implementation.
- Non-spherical robots, other coordinate systems (tori).
- Consider various applications (arm linkages, Roomba).
- Apply to coordinate-free search and exploration problems (Mars rover).

Fixing Negative Results Solving SEARCH_n and NAV_n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Improve Boxes to be optimally competitive.
- Calculate average-case complexity with improvements in certain environments
- Analyze case if *T* is unreachable 'discompetitive analysis'.
- Program implementation.
- Non-spherical robots, other coordinate systems (tori).
- Consider various applications (arm linkages, Roomba).
- Apply to coordinate-free search and exploration problems (Mars rover).

References I

Yoav Gabriely and Elon Rimon. CBUG: A quadratically competitive mobile robot navigation algorithm. Preprint, 2005.

Vladimir Lumelsky and Alexander Stepanov. Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. *Algorithmica*, 2(4), 403-430, 1987.

David Caraballo.

Areas of level sets of distance functions induced by asymmetric norms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Pacific J. Math., 218(1), 37-52, 2005.