
Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Navigating Blindly
Multidimensional online robot motion in unknown

environments

Josh Brown Kramer
Illinois Wesleyan University

Lucas Sabalka
University of California, Davis,

soon to be at Binghamton University

22 October, 2008

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Outline

1 Introduction

2 What’s Known: 2 dimensions
BUG1
Competitiveness
CBUG

3 Our Work: Higher Dimensions
Fixing Negative Results
Solving SEARCHn and NAVn

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Navigate Blindly

Figure: Bob.Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Our Three Tasks

Given:
An environment X ⊂ Rn with finite diameter
A spherical robot, named Bob, of radius r > 0, equipped
with:

tactile sensor
GPS sensor

A starting point S ∈ X
Possibly, a target point T ∈ X

The tasks are:
COVERn: Occupy as much of X as possible
SEARCHn: Find T and move from S to T
NAVn: Move from S to T

We want an efficient algorithm solving the task.
offline if X is known
online if X is unknown

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Our Three Tasks

Given:
An environment X ⊂ Rn with finite diameter
A spherical robot, named Bob, of radius r > 0, equipped
with:

tactile sensor
GPS sensor

A starting point S ∈ X
Possibly, a target point T ∈ X

The tasks are:
COVERn: Occupy as much of X as possible
SEARCHn: Find T and move from S to T
NAVn: Move from S to T

We want an efficient algorithm solving the task.
offline if X is known
online if X is unknown

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Our Three Tasks

Given:
An environment X ⊂ Rn with finite diameter
A spherical robot, named Bob, of radius r > 0, equipped
with:

tactile sensor
GPS sensor

A starting point S ∈ X
Possibly, a target point T ∈ X

The tasks are:
COVERn: Occupy as much of X as possible
SEARCHn: Find T and move from S to T
NAVn: Move from S to T

We want an efficient algorithm solving the task.
offline if X is known
online if X is unknown

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Our Three Tasks

Given:
An environment X ⊂ Rn with finite diameter
A spherical robot, named Bob, of radius r > 0, equipped
with:

tactile sensor
GPS sensor

A starting point S ∈ X
Possibly, a target point T ∈ X

The tasks are:
COVERn: Occupy as much of X as possible
SEARCHn: Find T and move from S to T
NAVn: Move from S to T

We want an efficient algorithm solving the task.
offline if X is known
online if X is unknown

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Our Three Tasks

Given:
An environment X ⊂ Rn with finite diameter
A spherical robot, named Bob, of radius r > 0, equipped
with:

tactile sensor
GPS sensor

A starting point S ∈ X
Possibly, a target point T ∈ X

The tasks are:
COVERn: Occupy as much of X as possible
SEARCHn: Find T and move from S to T
NAVn: Move from S to T

We want an efficient algorithm solving the task.
offline if X is known
online if X is unknown

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Our Three Tasks

Given:
An environment X ⊂ Rn with finite diameter
A spherical robot, named Bob, of radius r > 0, equipped
with:

tactile sensor
GPS sensor

A starting point S ∈ X
Possibly, a target point T ∈ X

The tasks are:
COVERn: Occupy as much of X as possible
SEARCHn: Find T and move from S to T
NAVn: Move from S to T

We want an efficient algorithm solving the task.
offline if X is known
online if X is unknown

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Our Three Tasks

Given:
An environment X ⊂ Rn with finite diameter
A spherical robot, named Bob, of radius r > 0, equipped
with:

tactile sensor
GPS sensor

A starting point S ∈ X
Possibly, a target point T ∈ X

The tasks are:
COVERn: Occupy as much of X as possible
SEARCHn: Find T and move from S to T
NAVn: Move from S to T

We want an efficient algorithm solving the task.
offline if X is known
online if X is unknown

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Our Three Tasks

Given:
An environment X ⊂ Rn with finite diameter
A spherical robot, named Bob, of radius r > 0, equipped
with:

tactile sensor
GPS sensor

A starting point S ∈ X
Possibly, a target point T ∈ X

The tasks are:
COVERn: Occupy as much of X as possible
SEARCHn: Find T and move from S to T
NAVn: Move from S to T

We want an efficient algorithm solving the task.
offline if X is known
online if X is unknown

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Our Three Tasks

Given:
An environment X ⊂ Rn with finite diameter
A spherical robot, named Bob, of radius r > 0, equipped
with:

tactile sensor
GPS sensor

A starting point S ∈ X
Possibly, a target point T ∈ X

The tasks are:
COVERn: Occupy as much of X as possible
SEARCHn: Find T and move from S to T
NAVn: Move from S to T

We want an efficient algorithm solving the task.
offline if X is known
online if X is unknown

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Our Three Tasks

Given:
An environment X ⊂ Rn with finite diameter
A spherical robot, named Bob, of radius r > 0, equipped
with:

tactile sensor
GPS sensor

A starting point S ∈ X
Possibly, a target point T ∈ X

The tasks are:
COVERn: Occupy as much of X as possible
SEARCHn: Find T and move from S to T
NAVn: Move from S to T

We want an efficient algorithm solving the task.
offline if X is known
online if X is unknown

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Our Three Tasks

Given:
An environment X ⊂ Rn with finite diameter
A spherical robot, named Bob, of radius r > 0, equipped
with:

tactile sensor
GPS sensor

A starting point S ∈ X
Possibly, a target point T ∈ X

The tasks are:
COVERn: Occupy as much of X as possible
SEARCHn: Find T and move from S to T
NAVn: Move from S to T

We want an efficient algorithm solving the task.
offline if X is known
online if X is unknown

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Our Three Tasks

Given:
An environment X ⊂ Rn with finite diameter
A spherical robot, named Bob, of radius r > 0, equipped
with:

tactile sensor
GPS sensor

A starting point S ∈ X
Possibly, a target point T ∈ X

The tasks are:
COVERn: Occupy as much of X as possible
SEARCHn: Find T and move from S to T
NAVn: Move from S to T

We want an efficient algorithm solving the task.
offline if X is known
online if X is unknown

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Why?

navigation problems
mail delivery in a city
moving packages in a factory

configuration space problems
Shuttle arm motion

exploration and sample acquisition
Mars Rover

area coverage problems
cleaning public places
Roomba (video)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Why?

navigation problems
mail delivery in a city
moving packages in a factory

configuration space problems
Shuttle arm motion

exploration and sample acquisition
Mars Rover

area coverage problems
cleaning public places
Roomba (video)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Why?

navigation problems
mail delivery in a city
moving packages in a factory

configuration space problems
Shuttle arm motion

exploration and sample acquisition
Mars Rover

area coverage problems
cleaning public places
Roomba (video)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Why?

navigation problems
mail delivery in a city
moving packages in a factory

configuration space problems
Shuttle arm motion

exploration and sample acquisition
Mars Rover

area coverage problems
cleaning public places
Roomba (video)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Why?

navigation problems
mail delivery in a city
moving packages in a factory

configuration space problems
Shuttle arm motion

exploration and sample acquisition
Mars Rover

area coverage problems
cleaning public places
Roomba (video)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Why?

navigation problems
mail delivery in a city
moving packages in a factory

configuration space problems
Shuttle arm motion

exploration and sample acquisition
Mars Rover

area coverage problems
cleaning public places
Roomba (video)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Why?

navigation problems
mail delivery in a city
moving packages in a factory

configuration space problems
Shuttle arm motion

exploration and sample acquisition
Mars Rover

area coverage problems
cleaning public places
Roomba (video)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Why?

navigation problems
mail delivery in a city
moving packages in a factory

configuration space problems
Shuttle arm motion

exploration and sample acquisition
Mars Rover

area coverage problems
cleaning public places
Roomba (video)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Why?

navigation problems
mail delivery in a city
moving packages in a factory

configuration space problems
Shuttle arm motion

exploration and sample acquisition
Mars Rover

area coverage problems
cleaning public places
Roomba (video)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Why?

navigation problems
mail delivery in a city
moving packages in a factory

configuration space problems
Shuttle arm motion

exploration and sample acquisition
Mars Rover

area coverage problems
cleaning public places
Roomba (video)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Mathematical Motivation

Discrete approximation via Rips complexes

Theorem (Caraballo)

Let C be a compact subset of Rn. For any point q ∈ Rn and for
almost every r > 0:

Voln−1((d−1
C (r)) ∩ Bn(q,2r)) ≤ 4n+1rn−1.

Even if C is a fractal curve, most tubes about C have finite
surface area.
Let C be the set of points where Bob’s center can be.
Almost always, the boundary of C has finite volume.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Mathematical Motivation

Discrete approximation via Rips complexes

Theorem (Caraballo)

Let C be a compact subset of Rn. For any point q ∈ Rn and for
almost every r > 0:

Voln−1((d−1
C (r)) ∩ Bn(q,2r)) ≤ 4n+1rn−1.

Even if C is a fractal curve, most tubes about C have finite
surface area.
Let C be the set of points where Bob’s center can be.
Almost always, the boundary of C has finite volume.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Mathematical Motivation

Discrete approximation via Rips complexes

Theorem (Caraballo)

Let C be a compact subset of Rn. For any point q ∈ Rn and for
almost every r > 0:

Voln−1((d−1
C (r)) ∩ Bn(q,2r)) ≤ 4n+1rn−1.

Even if C is a fractal curve, most tubes about C have finite
surface area.
Let C be the set of points where Bob’s center can be.
Almost always, the boundary of C has finite volume.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Mathematical Motivation

Discrete approximation via Rips complexes

Theorem (Caraballo)

Let C be a compact subset of Rn. For any point q ∈ Rn and for
almost every r > 0:

Voln−1((d−1
C (r)) ∩ Bn(q,2r)) ≤ 4n+1rn−1.

Even if C is a fractal curve, most tubes about C have finite
surface area.
Let C be the set of points where Bob’s center can be.
Almost always, the boundary of C has finite volume.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

The BUG1 algorithm

[Lumelsky and Stepanov]

BUG1
While not at T :

Move directly towards T .
If an obstacle is encountered:

Explore the obstacle (via clockwise circumnavigation).
Move to some point pmin on the obstacle closest to T .
If Bob cannot move directly towards T from pmin:

Target unreachable.

Target reached

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

The BUG1 algorithm

[Lumelsky and Stepanov]

BUG1
While not at T :

Move directly towards T .
If an obstacle is encountered:

Explore the obstacle (via clockwise circumnavigation).
Move to some point pmin on the obstacle closest to T .
If Bob cannot move directly towards T from pmin:

Target unreachable.

Target reached

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

The BUG1 algorithm

[Lumelsky and Stepanov]

BUG1
While not at T :

Move directly towards T .
If an obstacle is encountered:

Explore the obstacle (via clockwise circumnavigation).
Move to some point pmin on the obstacle closest to T .
If Bob cannot move directly towards T from pmin:

Target unreachable.

Target reached

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

The BUG1 algorithm

[Lumelsky and Stepanov]

BUG1
While not at T :

Move directly towards T .
If an obstacle is encountered:

Explore the obstacle (via clockwise circumnavigation).
Move to some point pmin on the obstacle closest to T .
If Bob cannot move directly towards T from pmin:

Target unreachable.

Target reached

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

The BUG1 algorithm

[Lumelsky and Stepanov]

BUG1
While not at T :

Move directly towards T .
If an obstacle is encountered:

Explore the obstacle (via clockwise circumnavigation).
Move to some point pmin on the obstacle closest to T .
If Bob cannot move directly towards T from pmin:

Target unreachable.

Target reached

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

The BUG1 algorithm

[Lumelsky and Stepanov]

BUG1
While not at T :

Move directly towards T .
If an obstacle is encountered:

Explore the obstacle (via clockwise circumnavigation).
Move to some point pmin on the obstacle closest to T .
If Bob cannot move directly towards T from pmin:

Target unreachable.

Target reached

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

BUG1 Example

TS

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

BUG1 Example

TS

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

BUG1 Example

TS

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

BUG1 Example

TS

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

BUG1 Example

TS

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Definition of Competitiveness

Given task P, like NAVn
For any algorithm A solving P, define

fA(t) = sup{tA(X)|topt (X) ≤ t}

g : R→ R is a universal lower bound on competitiveness
of P if for all A,

fA ∈ Ω(g)

A is O(g)-competitive if

fA ∈ O(g)

A is optimally competitive if A is O(g)-competitive and g is
a ULB for P

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Definition of Competitiveness

Given task P, like NAVn
For any algorithm A solving P, define

fA(t) = sup{tA(X)|topt (X) ≤ t}

g : R→ R is a universal lower bound on competitiveness
of P if for all A,

fA ∈ Ω(g)

A is O(g)-competitive if

fA ∈ O(g)

A is optimally competitive if A is O(g)-competitive and g is
a ULB for P

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Definition of Competitiveness

Given task P, like NAVn
For any algorithm A solving P, define

fA(t) = sup{tA(X)|topt (X) ≤ t}

g : R→ R is a universal lower bound on competitiveness
of P if for all A,

fA ∈ Ω(g)

A is O(g)-competitive if

fA ∈ O(g)

A is optimally competitive if A is O(g)-competitive and g is
a ULB for P

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Definition of Competitiveness

Given task P, like NAVn
For any algorithm A solving P, define

fA(t) = sup{tA(X)|topt (X) ≤ t}

g : R→ R is a universal lower bound on competitiveness
of P if for all A,

fA ∈ Ω(g)

A is O(g)-competitive if

fA ∈ O(g)

A is optimally competitive if A is O(g)-competitive and g is
a ULB for P

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Definition of Competitiveness

Given task P, like NAVn
For any algorithm A solving P, define

fA(t) = sup{tA(X)|topt (X) ≤ t}

g : R→ R is a universal lower bound on competitiveness
of P if for all A,

fA ∈ Ω(g)

A is O(g)-competitive if

fA ∈ O(g)

A is optimally competitive if A is O(g)-competitive and g is
a ULB for P

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness

Competitiveness can be linear, quadratic, exponential, etc.
A is linearly competitive iff fA(t) ∈ O(t) iff there exists c1, c0
with tA(t) ≤ c1topt + c0
Example: Tree traversal.

Goal: visit each vertex of a tree and return to start.
Algorithm: Never go back across an edge until all
neighboring edges have been traversed twice.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness

Competitiveness can be linear, quadratic, exponential, etc.
A is linearly competitive iff fA(t) ∈ O(t) iff there exists c1, c0
with tA(t) ≤ c1topt + c0
Example: Tree traversal.

Goal: visit each vertex of a tree and return to start.
Algorithm: Never go back across an edge until all
neighboring edges have been traversed twice.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness

Competitiveness can be linear, quadratic, exponential, etc.
A is linearly competitive iff fA(t) ∈ O(t) iff there exists c1, c0
with tA(t) ≤ c1topt + c0
Example: Tree traversal.

Goal: visit each vertex of a tree and return to start.
Algorithm: Never go back across an edge until all
neighboring edges have been traversed twice.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness

Competitiveness can be linear, quadratic, exponential, etc.
A is linearly competitive iff fA(t) ∈ O(t) iff there exists c1, c0
with tA(t) ≤ c1topt + c0
Example: Tree traversal.

Goal: visit each vertex of a tree and return to start.
Algorithm: Never go back across an edge until all
neighboring edges have been traversed twice.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness

Competitiveness can be linear, quadratic, exponential, etc.
A is linearly competitive iff fA(t) ∈ O(t) iff there exists c1, c0
with tA(t) ≤ c1topt + c0
Example: Tree traversal.

Goal: visit each vertex of a tree and return to start.
Algorithm: Never go back across an edge until all
neighboring edges have been traversed twice.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness

Competitiveness can be linear, quadratic, exponential, etc.
A is linearly competitive iff fA(t) ∈ O(t) iff there exists c1, c0
with tA(t) ≤ c1topt + c0
Example: Tree traversal.

Goal: visit each vertex of a tree and return to start.
Algorithm: Never go back across an edge until all
neighboring edges have been traversed twice.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness

Competitiveness can be linear, quadratic, exponential, etc.
A is linearly competitive iff fA(t) ∈ O(t) iff there exists c1, c0
with tA(t) ≤ c1topt + c0
Example: Tree traversal.

Goal: visit each vertex of a tree and return to start.
Algorithm: Never go back across an edge until all
neighboring edges have been traversed twice.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness

Competitiveness can be linear, quadratic, exponential, etc.
A is linearly competitive iff fA(t) ∈ O(t) iff there exists c1, c0
with tA(t) ≤ c1topt + c0
Example: Tree traversal.

Goal: visit each vertex of a tree and return to start.
Algorithm: Never go back across an edge until all
neighboring edges have been traversed twice.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness

Competitiveness can be linear, quadratic, exponential, etc.
A is linearly competitive iff fA(t) ∈ O(t) iff there exists c1, c0
with tA(t) ≤ c1topt + c0
Example: Tree traversal.

Goal: visit each vertex of a tree and return to start.
Algorithm: Never go back across an edge until all
neighboring edges have been traversed twice.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness

Competitiveness can be linear, quadratic, exponential, etc.
A is linearly competitive iff fA(t) ∈ O(t) iff there exists c1, c0
with tA(t) ≤ c1topt + c0
Example: Tree traversal.

Goal: visit each vertex of a tree and return to start.
Algorithm: Never go back across an edge until all
neighboring edges have been traversed twice.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness

Competitiveness can be linear, quadratic, exponential, etc.
A is linearly competitive iff fA(t) ∈ O(t) iff there exists c1, c0
with tA(t) ≤ c1topt + c0
Example: Tree traversal.

Goal: visit each vertex of a tree and return to start.
Algorithm: Never go back across an edge until all
neighboring edges have been traversed twice.
Must traverse each edge twice, and algorithm traverses
each edge exactly twice, so optimally (linearly) competitive.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness of BUG1

Competitiveness of BUG1?
Horrible.
Runs in time proportional to sum of lengths of boundaries
of (intervening) obstacles.
Is not O(g)-competitive for any function g.

How to fix it? Don’t allow Bob to get too far from T . Introduce
ellipse as virtual obstacle.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness of BUG1

Competitiveness of BUG1?
Horrible.
Runs in time proportional to sum of lengths of boundaries
of (intervening) obstacles.
Is not O(g)-competitive for any function g.

How to fix it? Don’t allow Bob to get too far from T . Introduce
ellipse as virtual obstacle.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness of BUG1

Competitiveness of BUG1?
Horrible.
Runs in time proportional to sum of lengths of boundaries
of (intervening) obstacles.
Is not O(g)-competitive for any function g.

How to fix it? Don’t allow Bob to get too far from T . Introduce
ellipse as virtual obstacle.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness of BUG1

Competitiveness of BUG1?
Horrible.
Runs in time proportional to sum of lengths of boundaries
of (intervening) obstacles.
Is not O(g)-competitive for any function g.

How to fix it? Don’t allow Bob to get too far from T . Introduce
ellipse as virtual obstacle.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

CBUG

[Gabriely and Rimon]

CBUG
Fix initial area A0(∼ d(S,T)2)
For i = 0 to∞:

Execute BUG1(S,T) within ellipse with foci S and T
and area 2iA0.
Success if at T
Failure if Bob did not touch virtual ellipse

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

CBUG

[Gabriely and Rimon]

CBUG
Fix initial area A0(∼ d(S,T)2)
For i = 0 to∞:

Execute BUG1(S,T) within ellipse with foci S and T
and area 2iA0.
Success if at T
Failure if Bob did not touch virtual ellipse

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

CBUG

[Gabriely and Rimon]

CBUG
Fix initial area A0(∼ d(S,T)2)
For i = 0 to∞:

Execute BUG1(S,T) within ellipse with foci S and T
and area 2iA0.
Success if at T
Failure if Bob did not touch virtual ellipse

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

CBUG

[Gabriely and Rimon]

CBUG
Fix initial area A0(∼ d(S,T)2)
For i = 0 to∞:

Execute BUG1(S,T) within ellipse with foci S and T
and area 2iA0.
Success if at T
Failure if Bob did not touch virtual ellipse

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

CBUG Example

TS

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

CBUG Example

TS

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

CBUG Example

TS

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness of CBUG

(Show Program)
Geometric Progression.

Theorem (Gabriely and Rimon)
NAV2 has a quadratic universal lower bound, namely given by

gr (x) :=
2π

3(1 + π)2r
x2 ∼ .122x2

r
.

Theorem (Gabriely and Rimon)
If T is reachable, CBUG solves NAV2 in time at most

3π
r

l2opt + (function of X , r).

Thus, CBUG is optimally competitive.
Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness of CBUG

(Show Program)
Geometric Progression.

Theorem (Gabriely and Rimon)
NAV2 has a quadratic universal lower bound, namely given by

gr (x) :=
2π

3(1 + π)2r
x2 ∼ .122x2

r
.

Theorem (Gabriely and Rimon)
If T is reachable, CBUG solves NAV2 in time at most

3π
r

l2opt + (function of X , r).

Thus, CBUG is optimally competitive.
Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness of CBUG

(Show Program)
Geometric Progression.

Theorem (Gabriely and Rimon)
NAV2 has a quadratic universal lower bound, namely given by

gr (x) :=
2π

3(1 + π)2r
x2 ∼ .122x2

r
.

Theorem (Gabriely and Rimon)
If T is reachable, CBUG solves NAV2 in time at most

3π
r

l2opt + (function of X , r).

Thus, CBUG is optimally competitive.
Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness of CBUG

(Show Program)
Geometric Progression.

Theorem (Gabriely and Rimon)
NAV2 has a quadratic universal lower bound, namely given by

gr (x) :=
2π

3(1 + π)2r
x2 ∼ .122x2

r
.

Theorem (Gabriely and Rimon)
If T is reachable, CBUG solves NAV2 in time at most

3π
r

l2opt + (function of X , r).

Thus, CBUG is optimally competitive.
Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

BUG1
Competitiveness
CBUG

Competitiveness of CBUG

(Show Program)
Geometric Progression.

Theorem (Gabriely and Rimon)
NAV2 has a quadratic universal lower bound, namely given by

gr (x) :=
2π

3(1 + π)2r
x2 ∼ .122x2

r
.

Theorem (Gabriely and Rimon)
If T is reachable, CBUG solves NAV2 in time at most

3π
r

l2opt + (function of X , r).

Thus, CBUG is optimally competitive.
Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Bad News 1

Proof of second theorem has a flaw....
Let A = area covered . Gabriely and Rimon assume length
of path traversed is at most A

2r .
Analogue not true for higher dimensions (ex: 3-D
r -neighborhood of planar space-filling curve)

Partial fix comes from Caraballo’s Theorem.

Theorem
For every r and every X with finitely many obstacle points there
exists k such that the length of the path traversed is at most
k A

2r .

Similar results in higher dimensions
Open question: reasonable result for real environments?

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Bad News 1

Proof of second theorem has a flaw....
Let A = area covered . Gabriely and Rimon assume length
of path traversed is at most A

2r .
Analogue not true for higher dimensions (ex: 3-D
r -neighborhood of planar space-filling curve)

Partial fix comes from Caraballo’s Theorem.

Theorem
For every r and every X with finitely many obstacle points there
exists k such that the length of the path traversed is at most
k A

2r .

Similar results in higher dimensions
Open question: reasonable result for real environments?

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Bad News 1

Proof of second theorem has a flaw....
Let A = area covered . Gabriely and Rimon assume length
of path traversed is at most A

2r .
Analogue not true for higher dimensions (ex: 3-D
r -neighborhood of planar space-filling curve)

Partial fix comes from Caraballo’s Theorem.

Theorem
For every r and every X with finitely many obstacle points there
exists k such that the length of the path traversed is at most
k A

2r .

Similar results in higher dimensions
Open question: reasonable result for real environments?

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Bad News 1

Proof of second theorem has a flaw....
Let A = area covered . Gabriely and Rimon assume length
of path traversed is at most A

2r .
Analogue not true for higher dimensions (ex: 3-D
r -neighborhood of planar space-filling curve)

Partial fix comes from Caraballo’s Theorem.

Theorem
For every r and every X with finitely many obstacle points there
exists k such that the length of the path traversed is at most
k A

2r .

Similar results in higher dimensions
Open question: reasonable result for real environments?

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Bad News 1

Proof of second theorem has a flaw....
Let A = area covered . Gabriely and Rimon assume length
of path traversed is at most A

2r .
Analogue not true for higher dimensions (ex: 3-D
r -neighborhood of planar space-filling curve)

Partial fix comes from Caraballo’s Theorem.

Theorem
For every r and every X with finitely many obstacle points there
exists k such that the length of the path traversed is at most
k A

2r .

Similar results in higher dimensions
Open question: reasonable result for real environments?

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Bad News 1

Proof of second theorem has a flaw....
Let A = area covered . Gabriely and Rimon assume length
of path traversed is at most A

2r .
Analogue not true for higher dimensions (ex: 3-D
r -neighborhood of planar space-filling curve)

Partial fix comes from Caraballo’s Theorem.

Theorem
For every r and every X with finitely many obstacle points there
exists k such that the length of the path traversed is at most
k A

2r .

Similar results in higher dimensions
Open question: reasonable result for real environments?

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Bad News 1

Proof of second theorem has a flaw....
Let A = area covered . Gabriely and Rimon assume length
of path traversed is at most A

2r .
Analogue not true for higher dimensions (ex: 3-D
r -neighborhood of planar space-filling curve)

Partial fix comes from Caraballo’s Theorem.

Theorem
For every r and every X with finitely many obstacle points there
exists k such that the length of the path traversed is at most
k A

2r .

Similar results in higher dimensions
Open question: reasonable result for real environments?

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Bad News 2

COVERn doesn’t make sense for n > 2. Neither does an
‘efficient’ algorithm for NAVn or SEARCHn:

Theorem (BKS)
If n ≥ 3, then every algorithm that solves either NAVn or
SEARCHn is not O(f)-competitive for any f : R→ R.

Proof via ‘parallel corridors’ examples:
idea: pack as many corridors into as small a volume as
possible, so Bob has to potentially explore every one of
them.
Can pack arbitrarily many corridors into finite volume for
n ≥ 3

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Bad News 2

COVERn doesn’t make sense for n > 2. Neither does an
‘efficient’ algorithm for NAVn or SEARCHn:

Theorem (BKS)
If n ≥ 3, then every algorithm that solves either NAVn or
SEARCHn is not O(f)-competitive for any f : R→ R.

Proof via ‘parallel corridors’ examples:
idea: pack as many corridors into as small a volume as
possible, so Bob has to potentially explore every one of
them.
Can pack arbitrarily many corridors into finite volume for
n ≥ 3

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Bad News 2

COVERn doesn’t make sense for n > 2. Neither does an
‘efficient’ algorithm for NAVn or SEARCHn:

Theorem (BKS)
If n ≥ 3, then every algorithm that solves either NAVn or
SEARCHn is not O(f)-competitive for any f : R→ R.

Proof via ‘parallel corridors’ examples:
idea: pack as many corridors into as small a volume as
possible, so Bob has to potentially explore every one of
them.
Can pack arbitrarily many corridors into finite volume for
n ≥ 3

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Bad News 2

COVERn doesn’t make sense for n > 2. Neither does an
‘efficient’ algorithm for NAVn or SEARCHn:

Theorem (BKS)
If n ≥ 3, then every algorithm that solves either NAVn or
SEARCHn is not O(f)-competitive for any f : R→ R.

Proof via ‘parallel corridors’ examples:
idea: pack as many corridors into as small a volume as
possible, so Bob has to potentially explore every one of
them.
Can pack arbitrarily many corridors into finite volume for
n ≥ 3

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Bad News 2

COVERn doesn’t make sense for n > 2. Neither does an
‘efficient’ algorithm for NAVn or SEARCHn:

Theorem (BKS)
If n ≥ 3, then every algorithm that solves either NAVn or
SEARCHn is not O(f)-competitive for any f : R→ R.

Proof via ‘parallel corridors’ examples:
idea: pack as many corridors into as small a volume as
possible, so Bob has to potentially explore every one of
them.
Can pack arbitrarily many corridors into finite volume for
n ≥ 3

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Parallel Corridors in 2-D

S

T

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Parallel Corridors in 3-D

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Parallel Corridors in 3-D

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Parallel Corridors in 3-D

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Parallel Corridors in 3-D

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Parallel Corridors in 3-D

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Parallel Corridors in 3-D

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

The Fix: Clearance Parameter

Weaken tasks slightly by adding a clearance parameter,
ε > 0.
Introduction of ε allows us, for instance, to ignore parallel
corridor spaces where the corridors are packed too tightly.

For a fixed ε, define

κ = 2
√

2rε+ ε2

and
r ′ = r + ε.

If a robot of radius r ′ can occupy two points A and B of X ,
and d(A,B) < κ, then Bob can move freely along the
straight line from A to B.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

The Fix: Clearance Parameter

Weaken tasks slightly by adding a clearance parameter,
ε > 0.
Introduction of ε allows us, for instance, to ignore parallel
corridor spaces where the corridors are packed too tightly.

For a fixed ε, define

κ = 2
√

2rε+ ε2

and
r ′ = r + ε.

If a robot of radius r ′ can occupy two points A and B of X ,
and d(A,B) < κ, then Bob can move freely along the
straight line from A to B.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

The Fix: Clearance Parameter

Weaken tasks slightly by adding a clearance parameter,
ε > 0.
Introduction of ε allows us, for instance, to ignore parallel
corridor spaces where the corridors are packed too tightly.

For a fixed ε, define

κ = 2
√

2rε+ ε2

and
r ′ = r + ε.

If a robot of radius r ′ can occupy two points A and B of X ,
and d(A,B) < κ, then Bob can move freely along the
straight line from A to B.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

The Fix: Clearance Parameter

Weaken tasks slightly by adding a clearance parameter,
ε > 0.
Introduction of ε allows us, for instance, to ignore parallel
corridor spaces where the corridors are packed too tightly.

For a fixed ε, define

κ = 2
√

2rε+ ε2

and
r ′ = r + ε.

If a robot of radius r ′ can occupy two points A and B of X ,
and d(A,B) < κ, then Bob can move freely along the
straight line from A to B.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Modifying the Tasks

Definition
The modified NAVn and SEARCHn problems are to reach T if
there is an r ′-path from S to T , and otherwise reach T or
determine no r ′-path exists.

Definition
The modified COVERn problem is to come within r ′ of every
point within r of an r ′-path from S.

Competitiveness should be measured against the optimal
r ′-path.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Modifying the Tasks

Definition
The modified NAVn and SEARCHn problems are to reach T if
there is an r ′-path from S to T , and otherwise reach T or
determine no r ′-path exists.

Definition
The modified COVERn problem is to come within r ′ of every
point within r of an r ′-path from S.

Competitiveness should be measured against the optimal
r ′-path.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Modifying the Tasks

Definition
The modified NAVn and SEARCHn problems are to reach T if
there is an r ′-path from S to T , and otherwise reach T or
determine no r ′-path exists.

Definition
The modified COVERn problem is to come within r ′ of every
point within r of an r ′-path from S.

Competitiveness should be measured against the optimal
r ′-path.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Universal Lower Bound

Linear universal lower bound for COVERn.

Theorem (BKS)
NAVn and SEARCHn have a universal lower bound on
competitiveness given by

lnopt

κn−2r ′
.

Proof: Analyze parallel corridor spaces (lots of details to
check)
With minor constraints, runtime is at least

lnopt

2n+2(1 +
√

n − 1)nκn−2r ′
.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Universal Lower Bound

Linear universal lower bound for COVERn.

Theorem (BKS)
NAVn and SEARCHn have a universal lower bound on
competitiveness given by

lnopt

κn−2r ′
.

Proof: Analyze parallel corridor spaces (lots of details to
check)
With minor constraints, runtime is at least

lnopt

2n+2(1 +
√

n − 1)nκn−2r ′
.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Universal Lower Bound

Linear universal lower bound for COVERn.

Theorem (BKS)
NAVn and SEARCHn have a universal lower bound on
competitiveness given by

lnopt

κn−2r ′
.

Proof: Analyze parallel corridor spaces (lots of details to
check)
With minor constraints, runtime is at least

lnopt

2n+2(1 +
√

n − 1)nκn−2r ′
.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Universal Lower Bound

Linear universal lower bound for COVERn.

Theorem (BKS)
NAVn and SEARCHn have a universal lower bound on
competitiveness given by

lnopt

κn−2r ′
.

Proof: Analyze parallel corridor spaces (lots of details to
check)
With minor constraints, runtime is at least

lnopt

2n+2(1 +
√

n − 1)nκn−2r ′
.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

How to Explore Obstacles

Cannot explore obstacles by touching every point
Remember explored obstacle points
Key observations: Only need sufficiently fine mesh of
obstacle points: 2 obstacle points of distance less than 2r
apart prevent Bob from passing between them
Approximate obstacles by shadow of appropriate Rips
complex of sufficiently fine sampling.
For convenience, we sample via a cubical lattice

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

How to Explore Obstacles

Cannot explore obstacles by touching every point
Remember explored obstacle points
Key observations: Only need sufficiently fine mesh of
obstacle points: 2 obstacle points of distance less than 2r
apart prevent Bob from passing between them
Approximate obstacles by shadow of appropriate Rips
complex of sufficiently fine sampling.
For convenience, we sample via a cubical lattice

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

How to Explore Obstacles

Cannot explore obstacles by touching every point
Remember explored obstacle points
Key observations: Only need sufficiently fine mesh of
obstacle points: 2 obstacle points of distance less than 2r
apart prevent Bob from passing between them
Approximate obstacles by shadow of appropriate Rips
complex of sufficiently fine sampling.
For convenience, we sample via a cubical lattice

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

How to Explore Obstacles

Cannot explore obstacles by touching every point
Remember explored obstacle points
Key observations: Only need sufficiently fine mesh of
obstacle points: 2 obstacle points of distance less than 2r
apart prevent Bob from passing between them
Approximate obstacles by shadow of appropriate Rips
complex of sufficiently fine sampling.
For convenience, we sample via a cubical lattice

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

How to Explore Obstacles

Cannot explore obstacles by touching every point
Remember explored obstacle points
Key observations: Only need sufficiently fine mesh of
obstacle points: 2 obstacle points of distance less than 2r
apart prevent Bob from passing between them
Approximate obstacles by shadow of appropriate Rips
complex of sufficiently fine sampling.
For convenience, we sample via a cubical lattice

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Approximating Obstacles

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Approximating Obstacles

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Approximating Obstacles

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Colors

White: Unexplored;
Yellow: Bob’s center can be at the center of the cube;
Red: Too close to an obstacle: the center of a robot of
radius r + ε cannot be anywhere in the cube;
Pink: outside of the virtual boundary.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Colors

White: Unexplored;
Yellow: Bob’s center can be at the center of the cube;
Red: Too close to an obstacle: the center of a robot of
radius r + ε cannot be anywhere in the cube;
Pink: outside of the virtual boundary.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Colors

White: Unexplored;
Yellow: Bob’s center can be at the center of the cube;
Red: Too close to an obstacle: the center of a robot of
radius r + ε cannot be anywhere in the cube;
Pink: outside of the virtual boundary.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Colors

White: Unexplored;
Yellow: Bob’s center can be at the center of the cube;
Red: Too close to an obstacle: the center of a robot of
radius r + ε cannot be anywhere in the cube;
Pink: outside of the virtual boundary.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Solving NAVn: Boxes

Boxesε

Break X into a grid of axis-parallel cubes of side length
l = min{ε/2, ε/

√
n}. Color all cubes White.

Move from S to the center of the current cube, C. Stop
if an obstacle is found.
Define a0 = d(S,T ′) + l , and set a = a0.
While not in the same cube as T

Color cubes outside {p : d(S,p) + d(p,T) ≤ a} Pink.
Explore X using GraphTraverse(C).
If no neighbor of a Pink cube is explored, stop.
If S is surrounded by points within Red cubes, stop.
Double a and color all Pink cubes White.

Travel towards T . If an obstacle is encountered, stop.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Solving NAVn: Boxes

Boxesε

Break X into a grid of axis-parallel cubes of side length
l = min{ε/2, ε/

√
n}. Color all cubes White.

Move from S to the center of the current cube, C. Stop
if an obstacle is found.
Define a0 = d(S,T ′) + l , and set a = a0.
While not in the same cube as T

Color cubes outside {p : d(S,p) + d(p,T) ≤ a} Pink.
Explore X using GraphTraverse(C).
If no neighbor of a Pink cube is explored, stop.
If S is surrounded by points within Red cubes, stop.
Double a and color all Pink cubes White.

Travel towards T . If an obstacle is encountered, stop.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Solving NAVn: Boxes

Boxesε

Break X into a grid of axis-parallel cubes of side length
l = min{ε/2, ε/

√
n}. Color all cubes White.

Move from S to the center of the current cube, C. Stop
if an obstacle is found.
Define a0 = d(S,T ′) + l , and set a = a0.
While not in the same cube as T

Color cubes outside {p : d(S,p) + d(p,T) ≤ a} Pink.
Explore X using GraphTraverse(C).
If no neighbor of a Pink cube is explored, stop.
If S is surrounded by points within Red cubes, stop.
Double a and color all Pink cubes White.

Travel towards T . If an obstacle is encountered, stop.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Solving NAVn: Boxes

Boxesε

Break X into a grid of axis-parallel cubes of side length
l = min{ε/2, ε/

√
n}. Color all cubes White.

Move from S to the center of the current cube, C. Stop
if an obstacle is found.
Define a0 = d(S,T ′) + l , and set a = a0.
While not in the same cube as T

Color cubes outside {p : d(S,p) + d(p,T) ≤ a} Pink.
Explore X using GraphTraverse(C).
If no neighbor of a Pink cube is explored, stop.
If S is surrounded by points within Red cubes, stop.
Double a and color all Pink cubes White.

Travel towards T . If an obstacle is encountered, stop.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Solving NAVn: Boxes

Boxesε

Break X into a grid of axis-parallel cubes of side length
l = min{ε/2, ε/

√
n}. Color all cubes White.

Move from S to the center of the current cube, C. Stop
if an obstacle is found.
Define a0 = d(S,T ′) + l , and set a = a0.
While not in the same cube as T

Color cubes outside {p : d(S,p) + d(p,T) ≤ a} Pink.
Explore X using GraphTraverse(C).
If no neighbor of a Pink cube is explored, stop.
If S is surrounded by points within Red cubes, stop.
Double a and color all Pink cubes White.

Travel towards T . If an obstacle is encountered, stop.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Solving NAVn: Boxes

Boxesε

Break X into a grid of axis-parallel cubes of side length
l = min{ε/2, ε/

√
n}. Color all cubes White.

Move from S to the center of the current cube, C. Stop
if an obstacle is found.
Define a0 = d(S,T ′) + l , and set a = a0.
While not in the same cube as T

Color cubes outside {p : d(S,p) + d(p,T) ≤ a} Pink.
Explore X using GraphTraverse(C).
If no neighbor of a Pink cube is explored, stop.
If S is surrounded by points within Red cubes, stop.
Double a and color all Pink cubes White.

Travel towards T . If an obstacle is encountered, stop.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Solving NAVn: Boxes

Boxesε

Break X into a grid of axis-parallel cubes of side length
l = min{ε/2, ε/

√
n}. Color all cubes White.

Move from S to the center of the current cube, C. Stop
if an obstacle is found.
Define a0 = d(S,T ′) + l , and set a = a0.
While not in the same cube as T

Color cubes outside {p : d(S,p) + d(p,T) ≤ a} Pink.
Explore X using GraphTraverse(C).
If no neighbor of a Pink cube is explored, stop.
If S is surrounded by points within Red cubes, stop.
Double a and color all Pink cubes White.

Travel towards T . If an obstacle is encountered, stop.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Solving NAVn: Boxes

Boxesε

Break X into a grid of axis-parallel cubes of side length
l = min{ε/2, ε/

√
n}. Color all cubes White.

Move from S to the center of the current cube, C. Stop
if an obstacle is found.
Define a0 = d(S,T ′) + l , and set a = a0.
While not in the same cube as T

Color cubes outside {p : d(S,p) + d(p,T) ≤ a} Pink.
Explore X using GraphTraverse(C).
If no neighbor of a Pink cube is explored, stop.
If S is surrounded by points within Red cubes, stop.
Double a and color all Pink cubes White.

Travel towards T . If an obstacle is encountered, stop.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

GraphTraverse

GraphTraverse(C)

If T ∈ C Return.
Set Adjacent = {cubes sharing (n − 1)-face with C}.
While there are White cubes in Adjacent ,

Pick White D ∈ Adjacent .
Move in a straight line toward the center of D.
If obstacle is hit, color D red and return to center of C.
Else

Color D Yellow
GraphTraverse(D,T).
If T is in the current cube, Return.

Travel back to the center of C.

Return

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

GraphTraverse

GraphTraverse(C)

If T ∈ C Return.
Set Adjacent = {cubes sharing (n − 1)-face with C}.
While there are White cubes in Adjacent ,

Pick White D ∈ Adjacent .
Move in a straight line toward the center of D.
If obstacle is hit, color D red and return to center of C.
Else

Color D Yellow
GraphTraverse(D,T).
If T is in the current cube, Return.

Travel back to the center of C.

Return

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

GraphTraverse

GraphTraverse(C)

If T ∈ C Return.
Set Adjacent = {cubes sharing (n − 1)-face with C}.
While there are White cubes in Adjacent ,

Pick White D ∈ Adjacent .
Move in a straight line toward the center of D.
If obstacle is hit, color D red and return to center of C.
Else

Color D Yellow
GraphTraverse(D,T).
If T is in the current cube, Return.

Travel back to the center of C.

Return

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

GraphTraverse

GraphTraverse(C)

If T ∈ C Return.
Set Adjacent = {cubes sharing (n − 1)-face with C}.
While there are White cubes in Adjacent ,

Pick White D ∈ Adjacent .
Move in a straight line toward the center of D.
If obstacle is hit, color D red and return to center of C.
Else

Color D Yellow
GraphTraverse(D,T).
If T is in the current cube, Return.

Travel back to the center of C.

Return

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

GraphTraverse

GraphTraverse(C)

If T ∈ C Return.
Set Adjacent = {cubes sharing (n − 1)-face with C}.
While there are White cubes in Adjacent ,

Pick White D ∈ Adjacent .
Move in a straight line toward the center of D.
If obstacle is hit, color D red and return to center of C.
Else

Color D Yellow
GraphTraverse(D,T).
If T is in the current cube, Return.

Travel back to the center of C.

Return

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Analysis of Boxes

Theorem (BKS)

If there is an (r + ε)-path, p, from S to T , then Boxesε will move
Bob from S to T .

Sketch of proof:
points in a cube are at most ε apart
If the center of a robot of radius r ′ can be SOMEWHERE in
a cube, Bob can be ANYWHERE
Reduces problem to finite graph exploration: stick to
1-skeleton of dual
GraphTraverse is essentially depth-first search

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Analysis of Boxes

Theorem (BKS)

If there is an (r + ε)-path, p, from S to T , then Boxesε will move
Bob from S to T .

Sketch of proof:
points in a cube are at most ε apart
If the center of a robot of radius r ′ can be SOMEWHERE in
a cube, Bob can be ANYWHERE
Reduces problem to finite graph exploration: stick to
1-skeleton of dual
GraphTraverse is essentially depth-first search

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Analysis of Boxes

Theorem (BKS)

If there is an (r + ε)-path, p, from S to T , then Boxesε will move
Bob from S to T .

Sketch of proof:
points in a cube are at most ε apart
If the center of a robot of radius r ′ can be SOMEWHERE in
a cube, Bob can be ANYWHERE
Reduces problem to finite graph exploration: stick to
1-skeleton of dual
GraphTraverse is essentially depth-first search

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Analysis of Boxes

Theorem (BKS)

If there is an (r + ε)-path, p, from S to T , then Boxesε will move
Bob from S to T .

Sketch of proof:
points in a cube are at most ε apart
If the center of a robot of radius r ′ can be SOMEWHERE in
a cube, Bob can be ANYWHERE
Reduces problem to finite graph exploration: stick to
1-skeleton of dual
GraphTraverse is essentially depth-first search

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Analysis of Boxes

Theorem (BKS)

If there is an (r + ε)-path, p, from S to T , then Boxesε will move
Bob from S to T .

Sketch of proof:
points in a cube are at most ε apart
If the center of a robot of radius r ′ can be SOMEWHERE in
a cube, Bob can be ANYWHERE
Reduces problem to finite graph exploration: stick to
1-skeleton of dual
GraphTraverse is essentially depth-first search

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Analysis of Boxes

Theorem (BKS)
In spaces without bottlenecks, the length of the path generated
by Boxesε is at most cn(lopt)

n(1
ε

)n−1
+ dn

ε + ε for some
constants cn, dn depending only on n.

Sketch of Proof: tree traversal
Compare to universal lower bound of

lnopt

κn−2r ′
∼

lnopt

ε
n−2

2 r ′

for small ε (recall κ = 2
√

2rε+ ε2).

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Analysis of Boxes

Theorem (BKS)
In spaces without bottlenecks, the length of the path generated
by Boxesε is at most cn(lopt)

n(1
ε

)n−1
+ dn

ε + ε for some
constants cn, dn depending only on n.

Sketch of Proof: tree traversal
Compare to universal lower bound of

lnopt

κn−2r ′
∼

lnopt

ε
n−2

2 r ′

for small ε (recall κ = 2
√

2rε+ ε2).

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Analysis of Boxes

Theorem (BKS)
In spaces without bottlenecks, the length of the path generated
by Boxesε is at most cn(lopt)

n(1
ε

)n−1
+ dn

ε + ε for some
constants cn, dn depending only on n.

Sketch of Proof: tree traversal
Compare to universal lower bound of

lnopt

κn−2r ′
∼

lnopt

ε
n−2

2 r ′

for small ε (recall κ = 2
√

2rε+ ε2).

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Solving COVER

Theorem (BKS)
The algorithm CBoxes solves the modified COVERn problem
and is optimally competitive with an upper bound on
competitiveness given by clopt + d, where c and d are
constants depending on r , n, and ε.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Improvements

Our algorithms are bare-bones to prove complexity estimates.
Average-case runtimes greatly improve with some
modifications:

Sampling Improvement by using better lattice
Taking Diagonals Improvement
Noticing T Improvement to treat SEARCH like NAV
Maximal Coloring Improvement
Disregarding Dead Ends Improvement
Greedy Improvement
Subdivision Improvement

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Improvements

Our algorithms are bare-bones to prove complexity estimates.
Average-case runtimes greatly improve with some
modifications:

Sampling Improvement by using better lattice
Taking Diagonals Improvement
Noticing T Improvement to treat SEARCH like NAV
Maximal Coloring Improvement
Disregarding Dead Ends Improvement
Greedy Improvement
Subdivision Improvement

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Improvements

Our algorithms are bare-bones to prove complexity estimates.
Average-case runtimes greatly improve with some
modifications:

Sampling Improvement by using better lattice
Taking Diagonals Improvement
Noticing T Improvement to treat SEARCH like NAV
Maximal Coloring Improvement
Disregarding Dead Ends Improvement
Greedy Improvement
Subdivision Improvement

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Improvements

Our algorithms are bare-bones to prove complexity estimates.
Average-case runtimes greatly improve with some
modifications:

Sampling Improvement by using better lattice
Taking Diagonals Improvement
Noticing T Improvement to treat SEARCH like NAV
Maximal Coloring Improvement
Disregarding Dead Ends Improvement
Greedy Improvement
Subdivision Improvement

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Improvements

Our algorithms are bare-bones to prove complexity estimates.
Average-case runtimes greatly improve with some
modifications:

Sampling Improvement by using better lattice
Taking Diagonals Improvement
Noticing T Improvement to treat SEARCH like NAV
Maximal Coloring Improvement
Disregarding Dead Ends Improvement
Greedy Improvement
Subdivision Improvement

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Improvements

Our algorithms are bare-bones to prove complexity estimates.
Average-case runtimes greatly improve with some
modifications:

Sampling Improvement by using better lattice
Taking Diagonals Improvement
Noticing T Improvement to treat SEARCH like NAV
Maximal Coloring Improvement
Disregarding Dead Ends Improvement
Greedy Improvement
Subdivision Improvement

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Improvements

Our algorithms are bare-bones to prove complexity estimates.
Average-case runtimes greatly improve with some
modifications:

Sampling Improvement by using better lattice
Taking Diagonals Improvement
Noticing T Improvement to treat SEARCH like NAV
Maximal Coloring Improvement
Disregarding Dead Ends Improvement
Greedy Improvement
Subdivision Improvement

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Example of Boxes (improved)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Example of Boxes (improved)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Example of Boxes (improved)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Example of Boxes (improved)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Example of Boxes (improved)

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Future Directions

Improve Boxes to be optimally competitive.
Calculate average-case complexity with improvements in
certain environments
Analyze case if T is unreachable – ‘discompetitive
analysis’.
Program implementation.
Non-spherical robots, other coordinate systems (tori).
Consider various applications (arm linkages, Roomba).
Apply to coordinate-free search and exploration problems
(Mars rover).

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Future Directions

Improve Boxes to be optimally competitive.
Calculate average-case complexity with improvements in
certain environments
Analyze case if T is unreachable – ‘discompetitive
analysis’.
Program implementation.
Non-spherical robots, other coordinate systems (tori).
Consider various applications (arm linkages, Roomba).
Apply to coordinate-free search and exploration problems
(Mars rover).

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Future Directions

Improve Boxes to be optimally competitive.
Calculate average-case complexity with improvements in
certain environments
Analyze case if T is unreachable – ‘discompetitive
analysis’.
Program implementation.
Non-spherical robots, other coordinate systems (tori).
Consider various applications (arm linkages, Roomba).
Apply to coordinate-free search and exploration problems
(Mars rover).

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Future Directions

Improve Boxes to be optimally competitive.
Calculate average-case complexity with improvements in
certain environments
Analyze case if T is unreachable – ‘discompetitive
analysis’.
Program implementation.
Non-spherical robots, other coordinate systems (tori).
Consider various applications (arm linkages, Roomba).
Apply to coordinate-free search and exploration problems
(Mars rover).

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Future Directions

Improve Boxes to be optimally competitive.
Calculate average-case complexity with improvements in
certain environments
Analyze case if T is unreachable – ‘discompetitive
analysis’.
Program implementation.
Non-spherical robots, other coordinate systems (tori).
Consider various applications (arm linkages, Roomba).
Apply to coordinate-free search and exploration problems
(Mars rover).

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Future Directions

Improve Boxes to be optimally competitive.
Calculate average-case complexity with improvements in
certain environments
Analyze case if T is unreachable – ‘discompetitive
analysis’.
Program implementation.
Non-spherical robots, other coordinate systems (tori).
Consider various applications (arm linkages, Roomba).
Apply to coordinate-free search and exploration problems
(Mars rover).

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Introduction
What’s Known: 2 dimensions

Our Work: Higher Dimensions

Fixing Negative Results
Solving SEARCHn and NAVn

Future Directions

Improve Boxes to be optimally competitive.
Calculate average-case complexity with improvements in
certain environments
Analyze case if T is unreachable – ‘discompetitive
analysis’.
Program implementation.
Non-spherical robots, other coordinate systems (tori).
Consider various applications (arm linkages, Roomba).
Apply to coordinate-free search and exploration problems
(Mars rover).

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

Appendix References

References I

Yoav Gabriely and Elon Rimon.
CBUG: A quadratically competitive mobile robot navigation
algorithm.
Preprint, 2005.

Vladimir Lumelsky and Alexander Stepanov.
Path-planning strategies for a point mobile automaton
moving amidst unknown obstacles of arbitrary shape.
Algorithmica, 2(4), 403-430, 1987.

David Caraballo.
Areas of level sets of distance functions induced by
asymmetric norms.
Pacific J. Math., 218(1), 37-52, 2005.

Josh Brown Kramer, Lucas Sabalka Navigating Blindly

	Introduction
	What's Known: 2 dimensions
	BUG1
	Competitiveness
	CBUG

	Our Work: Higher Dimensions
	Fixing Negative Results
	Solving SEARCHn and NAVn

	Appendix
	Appendix
	

